Techno India NJR Institute of Technology

Course File Neural Network (5EX3-01)

Mr. Jitendra Shrimali (Assistant Professor)

5EX3-01: NEURAL NETWORK

Cred	lit: 2 Max. Marks: 100(IA:20	, ETE:80)
2L+(DT+OP End Term Exam	: 2 Hours
SN	CONTENTS	HOURS
1.	Introduction: Objective, scope and outcome of the course.	01
2.	Introduction to Neural Networks : Biological basis for NN, Human brain, Models of a Neuron, Directed Graphs, Feedback, Network architectures, Knowledge representation, Artificial intelligence & Neural Networks.	06
3.	Learning Processes: Introduction, Error-Correction learning, Memory -based learning, Hebbian learning, Competitive learning, Boltzmann learning, Learning with a Teacher & without a teacher, learning tasks, Memory, Adaptation.	05
4	Single Layer Perceptrons: Introduction, Least-mean-square algorithm, Learning Curves, Learning rate Annealing Techniques, Perceptron, Perceptron Convergence Theorem.	06
5	Multilayer Perceptrons: Introduction, Back-Propagation Algorithm, XOR Problem, Output representation and Decision rule, Feature Detection, Back-Propagation and Differentiation, Hessian Matrix, Generalization.	06
6.	Radial-basis function Networks & Self-organizing Maps: Introduction to Radial basis function networks, Cover's Theorem on the Separability of Patterns, Interpolation Problem, Generalized Radial-Basis function networks, XOR Problem, Self-Organizing map, Summary of SOM Algorithm, Properties of the feature map.	03
	IOTAL	41

For Techno India NJR Institute of Technology Technol UIZALCA Dr. Pankaj Kumar Porwal (Principal)

Course Overview: The course has certain outcomes by virtue of which the students will get an idea of the subject Neural Networks.

Course Outcomes:

CO No	Course Outcome
1	Significance and role of neural networks
2	Ability to sense learning processes and do mathematical representations
3	Ability to realize Single layer perceptron
4	Ability to develop multilayer perceptron
5	Ability to estimate radial basis function and self-organizing map

Course Outcome Mapping with Program Outcome:

Course Outcome						Progra	m Outcor	ne					
CO No.		Domain-Specific					Domain-Independent						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO 1	2	0	0	0	0	0	0	0	0	0	0	0	
CO 2	2	2	0	0	0	0	0	0	0	0	0	0	
CO 3	2	2	0	3	0	0	0	0	0	0	0	0	
CO 4	2	3	0	3	0	0	0	0	0	0	0	0	
CO 5	0	3	0	2	0	0	0	0	0	0	0	0	
1: Slight (Low)), 2: Mo	derate (I	Medium)	, 3: Subst	antial (h	igh)	<u>n</u>	<u>n</u>	8			L	

For Techno India NJR Institute of Technology Technol UT 201 CM Dr. Pankaj Kumar Porwai (Principal)

Lecture plan based on Unit 1(Introduction - Introduction)

Lecture No.	Торіс	Unit Mapping
1	Fundamental concepts, scope and applications of neural networks (NN)	1

Lecture plan based on Unit 2 (Introduction to Neural Networks)

Lecture No.	Торіс	Unit Mapping
2	Biological basis for NN	2
3	Human brain and models of a neuron	2
4	Directed graphs	2
5	Network architecture and knowledge representation	2

Lecture plan based on Unit 3 (Learning processes)

Lecture No.	Торіс	Unit Mapping
6	Learning processes	3
7	Error-correction learning	3
8	Memory based learning	3
9	Hebbian learning, competitive learning	3
10	Boltzmann learning	3
11	Memory adaptation	3

Lecture plan based on Unit 4 (Single layer perceptrons)

Lecture No.	Торіс	Unit Mapping
12	Fundamental concepts	4
13	Least-mean square algorithm	4
14	Learning curves	4
15	Annealing techniques	4
16	Perceptron convergence theorem	4

Lecture plan based on Unit 5 (Multilayer perceptrons)

Lecture No.	Торіс	Unit Mapping
17	Back-propagation	5
18	XOR problem	5
19	Output representation and decision rule	5
20	Feature detection	5
21	Back-propagation and Hessian matrix	5

Lecture plan based on Unit 6 (Radial-basis function networks and self-organizing maps)

Lecture No.	Topic	Unit Mapping
22	Radial basis concepts	6
23	Cover's theorem For Techno months and all con	6
24	Patterns and interpolation theory	6
25	Self-organizing maps Dr. Panka Kanal	6
	(pillicipa)	

26 Properties of feature map	6

Textbook - "An Introduction to Neural Networks", K. Gurney, 1997 by UCL Press

MOOC courses -

https://www.mooc-list.com/tags/neural-networks

https://www.coursera.org/learn/neural-networks-deep-learning

Previous Year Question Paper

For Techno India NJR Institute of Technology Technol United Con Dr. Pankaj Kumar Porwai (Principal)

 Attempt any lour questions
 [4×10=40]

 1. What are the various characteristics of an artificial Neural Network? Also Explain the development of artificial Neural Network in detail.
 [10]

 5E1371/2019
 (1)
 [Contd.....

For Techno India NJR Institute of Technology Technol Const Const Const Dr. Pankaj Kumar Porwa (Principal)

- Realise a Hebb net for the AND-NOT function with bipolar inputs and targets (upto 2 iterations) [10]
- Using the perceptron Learning rule, find the updated weight for the given set of input vectors is as follows:-

$$x_{1} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ -1 \end{bmatrix}, x_{2} = \begin{bmatrix} 0 \\ 1.5 \\ -0.5 \\ -1 \end{bmatrix}, x_{3} = \begin{bmatrix} -1 \\ 1 \\ 0.5 \\ -1 \end{bmatrix} \text{ and the initial weight } W^{1} \text{ is, } W^{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0.5 \end{bmatrix}$$

The learning Constant C=0.1. The desired responses for x_1, x_2, x_3 are $d_1 = -1, d_2 = -1$ and $d_3 = 1$. [10] Discuss in detail the training Algorithm used in Back propagation Net. [10]

Differentiate between Back propagation and Radial basis function Network in detail.

- 6. Write short notes on:
 - i) Learning with a teacher and without a teacher.
 - ii) Learning rate Annealing techniques.
- [2×5=10]

(Descriptive/Analytical/Problem Solving/Design question) Attempt any two questions

Part - C

[2×15=30]

[10]

 Generate a neural Net using back propagation Network algorithm for X-OR logic function. The architecture and the values of initial weights and biases are shown in figure. [15]

 a) With the architecture, explain the training algorithm used in kohonen self organizing feature map. [5]

(2)

5E1371 .

2.

For Techno India NJR Institute of Technology Cich J CTZALOU Dr. Pankaj Kumar Porwal (Principal)

4.

5.

 Using the square of the Euclidean Distance find the cluster Unit C_j that is closest to the input vector (0.3,0.4)

ii) Using Learning rate of 0.3, find the new weights for unit C_j.

iii) Find new weights for C_{μ} and C_{μ} , if they are allowed to learn. [10]

Write short notes on : a) Boltzmann Learning

b)

[3×5=15]

- b) Cover's Theorem on the separability of patterns.
- c) Comparison between Artificial Neural N/W and Biological Neural Network.

For Techno India NJR Institute of Technology Technol UT 2010 Dr. Pankaj Kumar Porwai (Principal)