Techno India NJR Institute of Technology

Course File Microprocessor (5EX4-04)

Dr Vivek Jain (Assistant Professor) Department of ECE For Techno India NJR Institute of Technology For Techno India NJR Institute of Technology Dr. Pankaj Kumar Perwal (Principal)

5EX4-04: MICROPROCESSOR

SN	CONTENTS	HOUF
1	Introduction: Objective, scope and outcome of the course.	01
2	Fundamentals of Microprocessors	
	Fundamentals of Microprocessor Architecture. 8-bitMicroprocessor	
	and Microcontroller	
	architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bit	07
	microcontrollers. Definition of embedded system and its	
	characteristics, Role of microcontrollers in embedded Systems.	
	Overview of the 8051 family.	
з	The 8051 Architecture:	
	Internal Block Diagram, CPU, ALU, address, data and control bus,	
	Working registers, SFRs, Clock and RESET circuits, Stack and Stack	08
	Pointer, Program Counter, I/O ports, Memory Structures, Data and	
	Program Memory, Timing diagrams and Execution Cycles.	
4	Instruction Set and Programming	
	Addressing modes: Introduction, Instruction syntax, Data types, Subroutines Immediate	
	addressing, Register addressing, Direct addressing, Indirect	
	addressing, Register addressing, Direct addressing, indirect addressing, Relative addressing,	
	Indexed addressing, Bit inherent addressing, bit direct addressing.	
	8051 Instruction set,	
	Instruction timings. Data transfer instructions. Arithmetic	08
	instructions, Logical instructions,	
	Branch instructions, Subroutine instructions, Bit manipulation	
	instruction. Assembly	
	language programs, C language programs. Assemblers and compilers.	
	Programming and	
	debugging tools	
5	Memory and I/O Interfacing	
	Memory and I/O expansion buses, control signals, memory wait	
	states. Interfacing of	06
	peripheral devices such as General Purpose I/O, ADC, DAC, timers,	
-	counters, memory devices.	
6	External Communication Interface	
	Synchronous and Asynchronous Communication. RS232, SPI, I2C.	06
	Introduction and	
	interfacing to protocols like Blue-tooth and Zig-bee.	
7	Applications	
	LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing.	05
	sensor interfacing	

For Techno India NJR Institute of Technology Transf Technology Dr. Pankaj Kumar Porwal (Principal)

Course Overview:

General introduction to microprocessor systems; Operation and Control of 8-bit microprocessor; Instruction set; Assembly Language Programming; , I/O Techniques, Interfacing of I/O Devices; Interrupts; Peripheral Devices, Programmable Peripheral Interface (Intel 8255A), Programmable Interval timer (Intel 8253), Programmable Interrupt Controller (Intel 8259A), Programmable Keyboard/Display Interface (Intel 8279).

Course Outcomes:

CO.NO.	Cognitive Level	Course Outcome					
1	Comprehension	Able to Classify different types of microcontrollers.					
2	Application	Able to Sketch interfacing circuit for peripherals like, I/O, A/D, D/A, timer etc.					
3	Analysis	Able to Analyze response time of different microcontrollers.					
4	Synthesis	Able to Select processors, microcontroller for different application.					

Prerequisites:

- 1. Fundamentals knowledge of digital electronics.
- 2. Fundamentals knowledge of diode, transistor.

Course Outcome Mapping with Program Outcome:

Course Outcome					Pro	gram (Outcor	nes (P	O's)			
CO. NO.	Domain Specific		Domain Independent									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	3	0	0	0	0	0	0	0
CO2	2	1	2	1	3	0	0	0	0	0	0	0
CO3	2	2	1	2	2	0	0	0	0	0	0	0
CO4	2	2	2	1	3	0	0	0	0	0	0	0
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)												

For Techno India NJR Institute of Technology Tichost UTzaley Dr. Pankaj Kumar Porwa (Principal)

Course Coverage Module Wise:

Lecture	Unit	Торіс
No.		_
1	1	INTRODUCTION: Objective, scope and outcome of
		the course.
2	2	FUNDAMENTALS OF MICROPROCESSORS
3	2	Fundamentals of Microprocessor Architecture 8-
		bitMicroprocessor.
4	2	Architecture. 8-bit Microcontroller
5	2	Comparison of 8-bit microcontrollers, 16-bit and 32-bit
		microcontrollers.
6	2	Definition of embedded system and its characteristics.
7	2	Role of microcontrollers in embedded Systems.
8	2	Overview of the 8051 family.
9	3	THE 8051 ARCHITECTURE
10	3	Internal Block Diagram
11	3	CPU, ALU, address, data and control bus
12	3	Working registers, SFRs.
13	3	Clock and RESET circuits, Stack and Stack Pointer.
14	3	Program Counter, I/O ports, Memory Structures.
15	3	Data and Program Memory.
16	3	Timing diagrams and Execution Cycles.
17	4	INSTRUCTION SET AND PROGRAMMING
18	4	Addressing modes: Introduction, Instruction syntax, Data
		types, Subroutines
19	4	Immediate addressing, Register addressing, Direct
		addressing, Indirect addressing, Relative addressing,
20	4	Indexed addressing, Bit inherent addressing, bit direct
		addressing.
21	4	8051 Instruction set & Instruction timings.
22	4	Data transfer instructions, Arithmetic instructions,
		Logical instructions, Branch instructions, Subroutine
		instructions, Bit manipulation instruction, Institute of Technology
		For Techno India NUR INSTITUTE OF TO TRAIN

23	4	Assembly language programs, C language programs.
24	4	Assemblers and compilers. Programming and debugging
		tools.
25	5	MEMORY AND I/O INTERFACING
26	5	Memory and I/O expansion buses Control signals,
		memory wait states.
27	5	Interfacing of peripheral devices such as General
		Purpose I/O
28	5	ADC, DAC
29	5	Timers, counters
30	5	Memory devices.
31	6	EXTERNAL COMMUNICATION INTERFACE
32	6	Synchronous and Asynchronous
33	6	RS232
34	6	SPI & I2C
35	6	Introduction and interfacing to protocols Bluetooth
36	6	Introduction and interfacing to protocols Zigbee
37	7	APPLICATIONS
38	7	LED, LCD Interfacing
39	7	keyboard interfacing
40	7	Stepper motor interfacing & DC Motor interfacing
	-	

TEXT/REFERENCE BOOKS

- 1. Microprocessor Architecture: Programming and Applications with the 8085/8080A, R. S. Gaonkar, Penram International Publishing, 1996.
- 2. Embedded System Design, A Unified Hardware/Software Introduction, Frank Vahid/Tony Givaris, Jhon, Wiely Student Edition,2006.
- 3. The 8051 Microcontroller & Embedded System , Muhammad Ali Mazidi, Pearsons.
- 4. The 8051 Microcontroller, Kenneth J. Ayala, Penram International Publishing, 1996.

NPTEL COUSES LINK

1. https://nptel.ac.in/courses/106/103/106103182/

QUIZ Link

- 1. <u>https://www.javatpoint.com/embedded-systems-mcq</u>
- 2. <u>https://www.sanfoundry.com/embedded-systems-questions-answers-mcqs/</u>
- 3. https://www.eguardian.co.in/embedded-systems-multiple-choicequestions-with-answers/

Faculty Notes Link

1. https://drive.google.com/drive/folders/1iQxrGEcg2U9Z9Sg5YJAmT2KR5KQDf Qkh?usp=sharing

Assessment Methodology:

- 1. Practical exam using MATALB software.
- 2. Two Midterm exams where student have to showcase subjective learning.
- 3. Final Exam (subjective paper) at the end of the semester.

5E1364

B.Tech. V- Semester (Main) Examination, Nov. - 2019 PCC/PEC Electrical Engg. 5EE4-04 Microprocessor (Common For EE,EX)

Time: 3 Hours

Maximum Marks : 120 Min. Passing Marks : 42

Instructions to Candidates:

Attempt all ten questions from Part A, five questions out of Seven from Part B and Four questions out of Five from Part C.Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

PART - A

(Answer should be given up to 25 words only) All questions are compulsory (10×2=20) Differentiate between timers and counters. Draw the diagram of TCON in 8051. ۱. (2) Which register is used for serial programming in 8051? Illustrate it. (2) 2. List the 8051 interrupts with its priority. (2) 3. How is A/D converter interfaced with 8051? Explain. (2) 4. What are the benefits of subroutine? (2) 5. What does the term embedded system mean? (2) 6. Explain the function of each bit in TMOD register. (2) 7. (2) Draw the pin diagram of 8051. 8. State how band rate is calculated for serial data transfer in mode 1. (2) 9.

For Techno India NJR Institute of Technology Const CT 201 CV Dr. Pankaj Kumar Porwa (Principal)

· PART - B

(Analytical/Problem solving questions)

	Attempt any five questions	(5×8=40)	
1.	Compare 8-bit, 16-bit and 32-bit microcontrollers.	,	
2.	Show the interfacing circuit and functional pins of LCD.	(8)	
3.	Explain the block diagram of 8051. Also discuss its features.	(8)	
4.	Write short note on overview of 8051 family.	(8)	
5.	Give PSW of 8051 and describe the use of each bit in PSW.	(8)	
6.	Write short note on such	(8)	
7.	Write short note on synchronous and Asynchronous communication.	(8)	
	How are D/A and A/D interfaces used? Explain.		

PART - C

- -

(Descriptive/Analytical/Problem Solving/Design Question)

		- 0. (
		Attempt any Four questions (4×15=60)
1.	a)	How microprocessors and microcontrollers are different from computer based controllers? Explain.
	b)	(7) What is sensor interfacing and external memory interfacing? Explain in detail.
2.		(8)
	a)	A switch is connected to pin P 2.7 and a stepper motor to port 1. Write a program to monitor the status as of switching and if $SW = 0$, stepper motor should rotate clockwise continuously. if $SW = 1$, stepper motor should rotate anticlockwise, continuously. (8)
	b)	For an 8051 system of 11.0592 MHz, find the time delay for the following subroutine.
		Delay : MOV R3, #250
		Back : Nop
		Nop

DJNZ R3, BACK RET

+

-

(7)

For Techno India NJR Institute of Technology Const Clarator Dr. Pankaj Kumar Porwal (Principal)

a) Draw and explain the architecture of 8051.

 b) Write an ALP to read switch as shown in figure 1. If switch is closed turn on the LED else turn OFF the LED. (5)

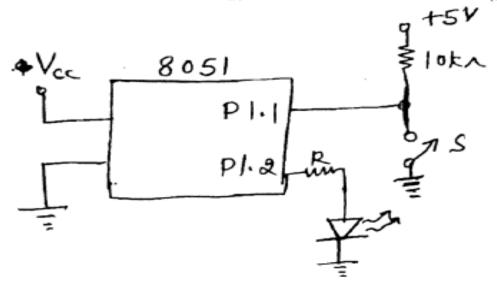


Figure 1.

4.	a)	Interface ADC 0804 to 8051 and write an ALP to connect the analog input to					
	,	digital value.	(10)				
	b)	What are SFR's? Explain.	(5)				
5.	a)	Draw the schematic for interfacing a stepper motor with 8051 microsc and write 8051 ALP for changing speed and direction of motor.	ontroller (12)				
	bj	Explain any two data addressing modes of 8051 with example.	(3)				

For Techno India NJR Institute of Technology Can St Con S