

Practices for analysis,
evaluation, and perception of
software process, as well as
learning for strong attention
to small details for accurately
identifying all problems and
bugs quickly and effectively.
Communication process to
collaborate with developers
or designers and precisely
describe bugs to be
eliminated.

Software
Testing and
Validation
Lab Manual

Dr Paras Kothari

1

2

f

3

4

Software Testing and Validation Lab
EXPERIMENT 1:

AIM: Consider an automated banking application. The user can dial the bank from a personal computer,

provide a six-digit password, and follow with a series of keyword commands that activate the banking

function. The software for the application accepts data in the following form:

Area Code Blank or three-digit number

Prefix Three-digit number, not beginning with 0 or 1

Suffix Four-digit number

Password Six-character alphanumeric

Commands "Check status", "Deposit", "Withdrawal"

Design ad-hoc test cases to test the system.

DESCRIPTION:-

Ad-hoc Testing:

Ad-hoc testing is an informal and improvisational approach to assessing the viability of a

product. An ad-hoc test is usually only conducted once unless a defect is found. Commonly used in

software development, ad hoc testing is performed without a plan of action and any actions taken are not

typically documented. Testers may not have detailed knowledge of product requirements. Ad hoc testing

is also referred to as random testing and monkey testing.

Because the approach is non-methodical, ad hoc testing can miss flaws that would be found in a

more structured testing system. However, the lack of formal requirements also means that obvious flaws

can be attended to more quickly than if they had to be approached in a more systematic fashion.

5

TEST CASES:

TestCase ID

Test Step

Description

Test Data

Expected

result

Actual result

Status

Pass/Fai l)

TC01

validation of area

code

enter the 3 digit area

code if non- local and

Blank if local.

TC02

validation of area

code

enter the 3 digit area

code if non- local and

Blank if local.

TC03

validation of area

code

enter the 3 digit area

code if non- local and

Blank if local.

TC04

validation of area

code

enter the 3 digit area

code if non- local and

Blank if local.

TC05

Validation of Prefix enter a 3-digit number

prefix. It should not

begin

with 0 (or) 1.

6

TC06

Validation of Prefix enter a 3-digit number

prefix.It should not

begin with 0 (or) 1.

TC07

Validation of

Prefix

enter a 3-digit number

prefix.It should not

begin

with 0 (or) 1.

TC08

Validation of

Suffix

enter a 4-digit

number suffix.

TC09

Validation of

Suffix

enter a 4-digit

number suffix.

TC10

Validation of

Password

enter a Six-

character

alphanumeric

password.

TC11

Validation of

Password

enter a Six-

character

alphanumeric

password.

TC12

Validation of

Password

enter a Six-

character

alphanumeric

password.

7

 "Withdrawl".

TC15

Validation of

commands

operate the commands

"Check

status","Deposit",

"Withdrawl".

TC13

Validation of

commands

operate the commands

"Check

status","Deposit",

"Withdrawl".

TC14

Validation of

commands

Operate the commands

"Check

status","Deposit",

8

VIVA VOCE QUESTIONS:

1. What are the Myths of Software Testing?

2. What are the different goals of Software Testing?

3. Is Exhaustive software testing possible?

4. What is the difference between Verification & Validation?

5. What is a Failure?

6. What is a Bug?

7. What is a Error?

8. What is Testware?

9. What is Incident?

10 .What is Test Oracle?

9

EXPERIMENT-2

AIM: Consider an automated banking application. The user can dial the bank from a personal computer,

provide a six-digit password, and follow with a series of keyword commands that activate the banking

function. The software for the application accepts data in the following form:

Area Code Blank or three-digit number

Prefix Three-digit number, not beginning with 0 or 1

Suffix Four-digit number

Password Six-character alphanumeric

Commands "Check status", "Deposit", "Withdrawal"

Design the test cases to test the system using following Black Box testing technique:

BVA, Worst BVA, Robust BVA, Robust Worst BVA

DESCRIPTION:

BOUNDARY VALUE ANALYSIS:

Boundary value analysis is the process of testing between extreme ends or boundaries between

partitions of the input values. So, these extreme ends like min, min+, nom, max, max- values are called

boundary values and the testing is called "boundary testing".

The basic idea in boundary value testing is to select input variable values at their:

1. Minimum

10

2. Just above the minimum

3. A nominal value

4. Just below the maximum

5. Maximum

ROBUST BVA:

Robustness testing can be seen as an extension of Boundary Value Analysis. The idea behind

Robustness testing is to test for clean and dirty test cases. By clean I mean input variables that lie in the

legitimate input range. By dirty I mean using input variables that fall just outside this input domain. In

addition to the aforementioned 5 testing values (min, min+, nom, max-, max) we use two more values for

each variable (min-, max+), which are designed to fall just outside of the input range.

WORST BVA:

Boundary Value analysis uses the critical fault assumption and therefore only tests for a single

variable at a time assuming its extreme values. By disregarding this assumption we are able to test the

outcome if more than one variable were to assume its extreme value. In an electronic circuit this is called

Worst Case Analysis.

ROBUST WORST BVA:

If the function under test were to be of the greatest importance we could use a method named

Robust Worst-Case testing which as the name suggests draws it attributes from Robust and Worst-Case

testing. Test cases are constructed by taking the Cartesian product of the 7-tuple set defined in the

Robustness testing chapter. Obviously this results in the largest set of test results we have seen so far and

requires the most effort to produce

11

TEST CASES:

TEST CASES USING BOUNDARY VALUE ANALYSIS:

 Area Code Prefix Suffix Password Command

Min value blank 200 0 a0A0a0 S/D/W

Min+ value 11 201 1 b1B1b1 SD/SW/DS

Max Value 934 999 9999 z9Z9z9 SDW

Max- value 863 998 9998 x8X8x8 SD/SW/DS

Nominal value 473 500 5000 m5M5m5 SD

Test Case

ID

Area

Code

Prefix

Suffix

Password

Command

Expected output

TC01

TC02

TC03

TC04

TC05

12

TEST CASES USING ROBUST BVA:

 Area Code Prefix Suffix Password Command

Min- value 0 199 999 !@#$% no input

Min value Blank 200 1111 a0A0a0 S/D/W

Min+ value 11 201 1112 b1B1b1 SD/SW/DS

Max value 934 999 9999 z9Z9z9 SDW

Max- value 863 998 9998 x8X8x8 SD/SW/DS

Max+ value 999 1000 10000 ?><{} WDS

Nominal value

473

500

5000

m5M5m5

SD

Test

CaseID

Area

Code

Prefix

Suffix

Password

Command

Expected output

TC01

TC02

TC03

TC04

TC05

13

TEST CASES USING WORST CASE TESTING:

 Area Code Prefix Suffix Password Command

Min value blank 200 0 a0A0a0 S/D/W

Min+ value 11 201 1 b1B1b1 SD/SW/DS

Max Value 934 999 9999 z9Z9z9 SDW

Max- value 863 998 9998 x8X8x8 SD/SW/DS

Nominal

value

473

500

5000

m5M5m5

SD

Test

CaseID

Area

Code

Prefix

Suffix

Password

Command

Expected output

TC01

TC02

TC03

TC04

TC05

14

VIVA VOCE QUESTIONS:

1. Mention some of the static & dynamic testing techniques?

2. What is an equivalence partition?

3. What is the purpose of test completion?

4. When should testing be stopped?

5. How many no of test cases are needed in BVA?

6. How many no of testcases are needed in ROBUST BVA?

7. How many no of testcases are needed in Worst CASE Testing ?

8. Faults found ,should be originally documented by whom?

9. Why does BVA provide good testcases?

10. What is test coverage?

15

EXPERIMENT-3

AIM: Consider an application that is required to validate a number according to the following simple

rules

 A number can start with an optional sign.

 The optional sign can be followed by any number of digits.

 The digits can be optionally followed by a decimal point, represented by a period.

 If there is a decimal point, then there should be two digits after the decimal.

 Any number-whether or not it has a decimal point, should be terminated a blank.

 A number can start with an optional sign.

 The optional sign can be followed by any number of digits.

 The digits can be optionally followed by a decimal point, represented by a period.

 If there is a decimal point, then there should be two digits after the decimal.

 Any number-whether or not it has a decimal point, should be terminated a blank. Generate test
cases to test valid and invalid numbers.

DESCRIPTION:

DECISION TABLE BASED TESTING:

A decision table is an excellent tool to use in both testing and requirements management.

Essentially it is a structured exercise to formulate requirements when dealing with complex

business rules. Decision tables are used to model complicated logic.

In a decision table, conditions are usually expressed as true (T) or false (F). Each column in the

table corresponds to a rule in the business logic that describes the unique combination of circumstances

that will result in the actions.

16

Decision tables can be used in all situations where the outcome depends on the combinations of

different choices, and that is usually very often. In many systems there are tons of business rules where

decision tables add a lot of value.

Steps for Constructing Decision Table and generating Test cases:

1. Analyze the requirement and create the first column

2. Add Columns

3. Reduce the Table

4. Determine Actions

5. Write Test Cases

DECISION TABLE:

Condition

Stub

Rule 1

Rule

2

Rule

3

Rule

4

C1:Number can start with optional sign T T T T

C2:Optional sign can be followed by any num of

digits

T

T

T

C3:Digits can be optionally followed by a

decimal point

T

T

T

C4:There should be 2 digits after a decimal point F T

C5:Number should be terminated with a blank F T T T

Action

Stub

A1:Valid number * *

A2:invalid number * *

17

TEST CASES:

Test

case

ID

optional sign

Digits

decimal

point

no.of

decimal

digits

terminatio

n blank

expecte

d

output

TC01

TC02

TC03

TC04

TC05

VIVA VOCE QUESTIONS:

1. What is Decision Table Based Testing?

2. What is Error Guessing?

3. What are the different notations used in Cause Effect Graph?

4. What is strong equivalence class?

5. What is weak equivalence class?

6. How do you generate the test cases in Decision Table Based Testing?

18

EXPERIMENT-4

AIM: Generate test cases using Black box testing technique to Calculate Standard Deduction on Taxable

Income. The standard deduction is higher for tax payers who are 65 or older or blind. Use the method given

below to calculate tax.

1. The first factor that determines the standard deduction is the filing status. The basic standard deduction

for the various filing status are:

Single $4,750

Married, filing a joint return $9,500

Married, filing a separate return $7,000

2. If a married couple is filing separate returns and one spouse is not taking standard Deduction, the other

spouse also is not eligible for standard deduction.

3. An additional $1,000 is allowed as standard deduction, if either the filer is 65 yrs or the spouse is 65 yrs

or older (the latter case applicable when the filing status is “Married” and filing “joint”).

4. An additional $1,000 is allowed as standard deduction, if either the filer is blind or the spouse is blind

(the latter case applicable when the filing status is

“married” and filing “joint”).

DESCRIPTION:

BLACK-BOX TESTING:

` Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or working. This method of test can be applied to virtually every

level of software testing: unit, integration, system and acceptance. It typically comprises most if not all

higher level testing ,but can also dominate unit testing as well.

EQUIVALENCE CLASS:

Equivalence Partitioning also called as equivalence class partitioning. It is abbreviated as ECP. It is

a software testing technique that divides the input test data of the application under test into each partition

at least once of equivalent data from which test cases can be derived. An advantage of this approach is it

reduces the time required for performing testing of a software due to less number of test cases.

EQUIVALENCE CLASSES:

19

C1= Status of the {Single||Married}

C2=Age of the {>=65&<65}

C3=Eye sight {Blind || No blind}

C4=Class {separate || joint}

TEST CASES

TEST

CASE

ID

Class

Covered

Status of

the Filer

Age of

the

Filer

Eye

sight

Class

Expected

output

ActualOutput

(Pass

/Fail)

SD1

SD2

SD3

SD4

SD5

SD6

SD7

SD8

SD9

SD10

20

VIVA VOCE QUESTIONS:

1. What is a V-Model?
2. What is Strong Equivalence Class?
3. What is Weak Equivalence Class?
4. What are Semi Random Test Cases?
5. What is Black Box Testing?
6. Why we split testing into different stages?
7. What is Fault Masking?
8. What is the Difference between STLC & SDLC?
9. What is the difference between Test Scenarios & Test Cases & Test Script?
10. What are the Test Delivarables?

21

 The control flow graph is a graphical representation of a program's control structure. It uses the

elements named process blocks, decisions, and junctions.

 The flow graph is similar to the earlier flowchart, with which it is not to be confused.

 The nodes are represented in the following way

EXPERIMENT-5

AIM: Consider the following program segment:

1. int max (int i, int j, int k)

2. {

3.int max;

4.if (i>j) then

5.if (i>k) then

6..max=i;

7.else max=k;

8. else if (j > k)

9. max=j

10.else max=k

11.return (max);

12.}

a) Draw the control flow graph for this program segment

b) Determine the cyclomatic complexity for this program

c) Determine the independent paths

DESCRIPTION:-

CONTROL FLOW GRAPH:

 Flow Graph Elements: A flow graph contains four different types of elements (1) Decisions (2)

Junctions (3) Case Statements.

1. Decisions:

 A decision is a program point at which the control flow can diverge.

22

3. Junctions:

 A junction is a point in the program where the control flow can merge.

 Examples of junctions are: the target of a jump or skip instruction in ALP, a label

that is a target of GOTO.

CYCLOMATIC COMPLEXITY:

 Machine language conditional branch and conditional skip instructions are

examples of decisions.

 Most of the decisions are two-way but some are three way branches in control

flow.

2. Case Statements:

 A case statement is a multi-way branch or decisions.

 Examples of case statement are a jump table in assembly language, and the

PASCAL case statement.

 From the point of view of test design, there are no differences between Decisions

and Case Statements

Cyclomatic complexity is a source code complexity measurement that is being correlated to a

number of coding errors. It is calculated by developing a Control Flow Graph of the code that measures

the number of linearly-independent paths through a program module.

In other words, the cyclomatic complexity metric is based on the number of decisions in a

program. It is important to testers because it provides an indication of the amount of testing (including

reviews) necessary to practically avoid defects.

23

I. Cyclomatic complexity = E - N + P

Where, E = number of edges in the flow graph.

N = number of nodes in the flow graph.

P = number of Procedures in the flow graph

II. Cyclomatic complexity = D+1

Where, D= number of decision statements in the flow graph

III. Cyclomatic complexity = number of regions in graph G.

INDEPENDENT PATHS:

The number of different paths from the stating node of the flow graph to the ending node of the

flow graph. A graph may have 1 or more independent paths.

In other words, areas of code identified as more complex are candidates for reviews and

additional dynamic tests. While there are many ways to calculate cyclomatic complexity, the easiest way

is to sum the number of binary decision statements (e.g. if, while, for, etc.) and add 1 to it. A more formal

definition regarding the calculation rules is provided in the glossary.

Cyclomatic complexity is measured in three ways:

24

1 2 3
A

4 B

5
R2 C R4

R1 D
6

7
E

8 F

9 G

R3 H
10

I I
11 12

A) CONTROL FLOW GRAPH:

25

B) CYCLOMETRIC COMPLEXITY:

V(G)=e-n+2P

=

V(G)=d+1

=

V(G)= no.of regions in graph G

=

C) INDEPENDENT PATHS:

VIVA VOCE QUESTIONS:

1) What is Control Flow Graph?

2) What is Cyclomatic Complexity?

3) How do you determine no of Independent paths in a program segment?

4) What is White Box Testing?

5) What is meant by Decision Node?

6) What is the difference between Segment & Path Segment?

7) What is the Junction Node?

26

EXPERIMENT-6

AIM: source code of simple insertion sort implementation using arrays in ascending order in c

programming language

PROGRAM:

1. #include<stdio.h>

2. Int main()

3. {

4. IntI,j,s,temp,a[20];

5. Printf(“Enter total elements”);

6. Scanf(“%d”,&s);

7. Printf(“Enter %d elements”,s);

8. For(i=0;i<s;i++)

9. Scanf(“%d”,a[i]);

10. For(i=0;i<s;i++)

11. {

12. Temp=a[i];

13. J=i-1;

14. While((temp<a[j])&&(j>=0))

15. {

16. a[j+1]=a[j];

17. j=j-1;

18. }

19. a[j+1]=temp;

20. }

21. Printf(“after sorting”);

22. For(i=0;i<s;i++)

23. Printf(“%d”,a[i]);

24. return 0;

25. }

27

a) Draw control flow graph

b) Determine the cyclomatic complexity

c) Determine independent paths.

d) Design test cases for this program segment.

A) CONTROL FLOW GRAPH:

28

B) CYCLOMATIC COMPLEXITY:

a. V(g) = e-n+2p =

b. V(g) = d+1 =

c. No „of regions: v(g)=

C) INDEPENDENT PATHS :

D) TEST CASES :

Test cases Input Expected Output Independent Path

TC01

TC02

TC03

TC04

VIVA VOCE QUESTIONS:

1) What is the need of White Box Testing?

2) What is the difference between White Box & Black Box Testing?

3) What is meant by Basis Path Testing?

4) Discuss the applications of Path testing?

5) What is Graph Matrix?

6) What is static testing?

29

EXPERIMENT-7

AIM: Consider a system having an FSM for a stack having the following states and Transitions.

STATES:

Initial: Before creation

Empty: Number of elements =0

Holding:Number of elements > 0, but less than the maximum capacity.

Full: Number of elements = maximum

Final: After destruction

Initial to Empty: Create

Empty to Holding, Empty to Full, Holding to Holding, Holding to Full: add

Empty to Final, Full to Final, Holding to Final:Destroy

Holding to Empty, Full to Holding, Full to Empty: Delete

Design test case for this FSM using state table- based testing.

DESCRIPTION:

State Transition testing, a black box testing technique, in which outputs are triggered by changes

to the input conditions or changes to 'state' of the system. In other words, tests are designed to execute

valid and invalid state transitions.

DERIVING TEST CASES:

 Understand the various state and transition and mark each valid and invalid state

 Defining a sequence of an event that leads to an allowed test ending state

 Each one of those visited state and traversed transition should be noted down

 Steps 2 and 3 should be repeated until all states have been visited and all transitions traversed

30

 For test cases to have a good coverage, actual input values and the actual output values have to be

generated

ADVANTAGES:

 Allows testers to familiarize with the software design and enables them to design tests effectively.

 It also enables testers to cover the unplanned or invalid states.

STATE TABLE:

State / Event Create Add Delete Destroy

Initial Empty / T1 Initial / T0 Initial / T0 Initial / T0

Empty Empty / T1 Holding / T2

Full / T3

Empty / T1 Final / T6

31

Holding Holding /

T2

Holding / T4

Full / T5

Empty / T9 Final / T8

Full Full / T3 Full / T3 Holding / T10

Empty / T11

Final / T7

Final Final / T6 Final / T6 Final / T6 Final / T6

TEST CASES:

 Input Expected Output

Test Case ID State Event O/P Next State

TC01

TC02

TC03

TC04

TC05

TC06

TC07

TC08

TC09

TC10

32

TC11

TC12

TC13

TC14

TC15

TC16

TC17

TC18

TC19

TC20

TC21

TC22

TC23

VIVA VOCE QUESTIONS:

1. What is State Table Based Testing?

2. What is FSM?

3. What is meant by state transition?

4. What is meant by error guessing?

5. Each row of state table corresponding to what?

6. Each column of state table corresponding to what?

33

EXPERIMENT-8

AIM :Given the following fragments of code, how many tests are required for 100% decision coverage ?

Give the test cases.

PROGRAM:

If width > length then

biggest_dimension=width

If height > width

biggest_dimension = height

else

end

biggest_dimension = length

if height > length

biggest_dimension = height

end_if

end_if

DESCRIPTION:

Branch coverage is also known as Decision coverage or all-edges coverage.It covers both the true

and false conditions unlikely the statement coverage.A branch is the outcome of a decision, so branch

coverage simply measures which decision outcomes have been tested. This sounds great because it takes

a more in-depth view of the source code than simple statement coverage.

A decision is an IF statement, a loop control statement (e.g. DO-WHILE or REPEAT-UNTIL), or

a CASE statement, where there are two or more outcomes from the statement. With an IF statement, the

exit can either be TRUE or FALSE, depending on the value of the logical condition that comes after IF.

ADVANTAGES OF DECISION COVERAGE:

 To validate that all the branches in the code are reached

 To ensure that no branches lead to any abnormality of the program‟s operation

 It eliminates problems that occur with statement coverage testing

34

DISADVANTAGES OF DECISION COVERAGE:

 This metric ignores branches within Boolean expressions which occur due to short-circuit

operators.

Number of decision outcomes exercised

Decision Coverage=

Total number of decision outcomes

x 100

TEST CASES:

Test case id Input Expected output Actual Output

TC01

TC02

TC03

TC04

VIVA VOCE QUESTIONS:

1) What is meant by Branch Coverage?

2) What is meant by Condition Coverage?

3) What is meant by Decision/Condition Coverage?

4) What is the criteria for Logic Coverage?

35

EXPERIMENT-9

AIM : To give the following code ., how much minimum number of test cases is required for full statement

and branch coverage ?

PROGRAM:

Read p

Read q

If p+q>100

Then print “large: endif

If p>50

Then print “p large” endif

DESCRIPTION:

STATEMENT COVERAGE:

Statement coverage is a white box testing technique, which involves the execution of all the

statements at least once in the source code. It is a metric, which is used to calculate and measure the

number of statements in the source code which have been executed. Using this technique, we can check

what the source code is expected to do and what it should not. It can also be used to check the quality of the

code and the flow of different paths in the program. The main drawback of this technique is that we cannot

test the false condition in it.

Advantage of statement coverage:

 It verifies what the written code is expected to do and not to do

 It measures the quality of code written

 It checks the flow of different paths in the program and it also ensure that whether those path are

tested or not.

36

Disadvantage of statement coverage:

 It cannot test the false conditions.

 It does not report that whether the loop reaches its termination condition.

 It does not understand the logical operators.

Number of statements Executed

Statement coverage =

Total number of statements in the source code

Branch Coverage:

x 100

Branch coverage is also known as Decision coverage or all-edges coverage.It covers both the true

and false conditions unlikely the statement coverage.A branch is the outcome of a decision, so branch

coverage simply measures which decision outcomes have been tested. This sounds great because it takes a

more in-depth view of the source code than simple statement coverage.

A decision is an IF statement, a loop control statement (e.g. DO-WHILE or REPEAT-UNTIL), or a

CASE statement, where there are two or more outcomes from the statement. With an IF statement, the exit

can either be TRUE or FALSE, depending on the value of the logical condition that comes after IF.

Advantages of decision coverage:

 To validate that all the branches in the code are reached

 To ensure that no branches lead to any abnormality of the program‟s operation

 It eliminates problems that occur with statement coverage testing

Disadvantages of decision coverage:

 This metric ignores branches within Boolean expressions which occur due to short-circuit

operators.

37

Number of decision outcomes exercised

Decision Coverage=

Total number of decision outcomes

x 100

TEST CASES:

i) Statement Coverage (minimum) :

Test Case ID Input Expected Output

TC01

ii) Branch Coverage (minimum):

Test Case ID Input Expected Output

TC01

TC02

VIVA VOCE QUESTIONS:

1. What is meant by statement coverage?

2. What is meant by multiple condition coverage?

3. Explain what is Test Plan? What are the information that should be covered in TestPlan ?

4. What is test management review and why it is important?

5. What is the difference between Test Matrix &Tracebility Matrix?

6. Mention the different Categories of defects?

7. What are the different types of test coverage techniques?

8. What is meant by an acceptance testing?

38

EXPERIMENT-10

AIM: Consider a program to input two numbers and print them in ascending order given below. Find all

du paths and identify those du-paths that are not feasible. Also find all dc paths and generate the test cases

for all paths (dc paths and non dc paths).

#include<stdio.h>

#include<conio.h>

1. void main ()

2. {

3 int a, b, t;

4. Clrscr ();

5. Printf (“Enter first number”);

6. scanf (“%d”,&a);

7. printf(“Enter second number”);

8. scanf(“%d”,&b);

9. if (a<b){

10. t=a;

11. a=b;

12. b=t;

13. }

14. printf (“%d %d”, a, b);

15 getch ();

}

DESCRIPTION:

DU-PATHS:-

In a path segment if the variable is defined earlier and the last link has a computational use of that

variable then that path is termed as a du path.

A sub-path in the flow is defined to go from a point where a variable is "defined", to a point where

it is "referenced", that is, where it is "used" - whatever kind of usage it is. Such a sub-path is called a

39

1,2,3,4,5

6

7,8

9

11,12,13

14

15,16

"definition-use pair" or "du-pair". The pair is made up of a "definition" of a variable and a "use" of the

variable.

DC-PATHS:-

• A path (i, n1, ..., nm, j) is called a definition-clear path with respect to x from node i to node j if it

contains no definitions of variable x in nodes (n1, ..., nm , j) .

• The family of data flow criteria requires that the test data execute definition-clear paths from each

node containing a definition of a variable to specified nodes containing c-use and edges

containing p-use of that variable.

CONTROL FLOW GRAPH:-

40

1,2,3,4,5

6:Define

7,8

9:P-use

10:C-use

11:Define

12,13

14:P-use

15,16

Variable „a‟ Data Flow Graph:-

41

DU-PATHS DC-PATHS

Variable „b‟ Data Flow Graph:-
1,2,3,4,5,6,7

8:Define

9:P-use

10

11:C-use

12:Define

13

14:P-use

15,16

DU-PATHS DC-PATHS

42

1,2,3,4,5,6,7,8

9

10:Define

11

12:C-use

13

14

15,16

Variable „t‟ Data Flow Graph:-

43

DU-PATHS DC-PATHS

1. 1.

Variable Defined at Used at

A

b

t

VIVA VOCE QUESTIONS:

1. What is data flow testing?

2. What are the different data flow anomalies?

3. What is the difference definition node & usage node?

4. What is difference between static data flow testing & dynamic data flow testing?

5. What is du-path?

6. What is dc-path?

7. What are the different variants of Inspection process?

44

EXPERIMENT-11

AIM: Consider the program and generate possible program slices for all variables. Design at least one test

case from every slice.

#include<stdio.h>

#include<conio.h>

3. void main ()

4. {

3 int a, b, t;

14. Clrscr ();

15. Printf (“Enter first number”);

16. scanf (“%d”,&a);

17. printf(“Enter second number”);

18. scanf(“%d”,&b);

19. if (a<b){

20. t=a;

21. a=b;

22. b=t;

23. }

14. printf (“%d %d”, a, b);

15 getch ();

}

DESCRIPTION:

One of the program analysis techniques is program slicing. The main applications of program

slicing include various software engineering activities such as program understanding, debugging, testing,

program maintenance, complexity measurement and so on. Program slicing is a feasible method to restrict

the focus of a task to specific sub-components of a program. It can also be used to extract the statements

of a program that are relevant to a given computation.

45

TEST CASES:-

Test Case id a b a b

T1 10 20 20 10

T2 20 10 20 10

T3 10 10 10 10

EXECUTION SLICE:-

The Set of statements executed under a Test Case is called as an Execution Slice of a program.

#include<stdio.h>

#include<conio.h>

1.void main ()

2.{

3. int a, b, t;

4. Clrscr ();

5. Printf (“Enter first number”);

6.scanf (“%d”,&a);

7.printf(“Enter second number”);

8.scanf(“%d”,&b);

9.if (a<b){

10.t=a;

11. a=b;

12. b=t;

13.}

14. printf (“%d %d”, a, b);

15 getch ();

}

46

In the above Program the IF statement(9) is changed to “if(a==b)” then only the test case T3 has

to be re-run.

Test Case id a B a b

T3

DYNAMIC SLICE:-

The set of statements executed under a test case and having an effect on program output is called

as Dynamic Slice of a program.

#include<stdio.h>

#include<conio.h>

1void main ()

2{

3. int a, b, t;

4. Clrscr ();

5. Printf (“Enter first number”);

6.scanf (“%d”,&a);

7.printf(“Enter second number”);

8.scanf(“%d”,&b);

9.if (a<b){

10.t=a;

11. a=b;

12. b=t;

13.}

14. printf (“%d %d”, a, b);

15 getch ();

}

47

In the above Program the IF statement(9) is changed to “if(a>b)” then only the test case T2 has to

be re-run.

Test Case id a B a b

T2

VIVA VOCE QUESTIONS:

1. What is Regression Testing?

2. Difference between Progressive & Regressive Testing?

3. What are the objectives of regression testing?

4. What are the types of Test Case Prioritization?

5.What are the different Prioritization techniques?

6. What is execution slice?

7. What is dynamic slice?

8. What is relevant slice?

48

EXPERIMENT-12

AIM:Consider the code to arrange the nos. in ascending order. Generate the test cases for relational

coverage, loop coverage and path testing. Check the adequacy of the test cases through mutation testing

and also compute the mutation score for each.

PROGRAM:

1.i = 0;

2.n=4;

3.While (i<n-1)

4.do j = i + 1;

5.While (j<n)

6.do if A[i]<A[j]

7. Swap (A[i], A[j]);

8 end do;

9. i=i+1;

10. end do

DESCRIPTION:

PATH TESTING:

Path Testing is a structural testing method based on the source code or algorithm and NOT based

on the specifications. It can be applied at different levels of granularity.

PATH TESTING TECHNIQUES:

 Control Flow Graph (CFG) - The Program is converted into Flow graphs by representing the

code into nodes, regions and edges.

 Decision to Decision path (D-D) - The CFG can be broken into various Decision to Decision

paths and then collapsed into individual nodes.

 Independent (basis) paths - Independent path is a path through a DD-path graph which cannot be

reproduced from other paths by other methods.

49

MUTATION TESTING:

Mutation testing is a structural testing technique, which uses the structure of the code to guide the

testing process. On a very high level, it is the process of rewriting the source code in small ways in order

to remove the redundancies in the source code.

These ambiguities might cause failures in the software if not fixed and can easily pass through

testing phase undetected.

50

7
R3

1, 2

A

3

4

C

5

R2
6

F 8

G
9

H
10

Control Flow Graph:

R4

E

R1

D

B

51

Cyclomatic Complexity:

Cyclomatic Complexityis measured in three ways:

1. Cyclomatic complexity = E - N + P

Where, E = number of edges in the flow graph.

N = number of nodes in the flow graph.

P = number of Procedures in the flow graph

V (G) = E - N + P

=

2. Cyclomatic complexity = number of regions in graph

V (G)=

3. Cyclomatic complexity = number of Decision nodes in the graph + 1

V (G) =

IndependentPaths:

The number of different paths from the starting node of the flow graph to reach the ending node of the

flow graph. A graph may have 1 or more independent paths.

52

TEST CASES:

TID

INPUT

EXPECTED

OUTPUT

OUTPUT

INPUTPATH

TC01

TC02

TC03

ORIGINAL PROGRAM:

1.i = 0;

2.n=4;

3.While (i<n-1)

4.do j = i + 1;

5.While (j<n)

6.do if A[i]<A[j]

7. Swap (A[i], A[j]);

8 end do;

9. i=i+1;

10.end do

MUTATED PROGRAM:

1.i = 0;

2.n=4;

3.While (i<n+1) // M1

4.do j = i + 1;

5. While (j<n+1) // M2

53

6. do if A[i]>=A[j] // M3

7. Swap (A[i], A[j]);

8 end do;

9. i=i+1;

10.end do

KILLED MUTANT:

If the original program and mutant programs generate the same output, then that mutant is

killed by the test case. Hence the test case is good enough to detect the change between the

original and the mutant program.

LIVE MUTANT:

If the original program and mutant program generate different output, Mutant is kept alive.

In such cases, more effective test cases need to be created that kill all mutants.

TEST CASES:

TID

INPUT

ORIGINAL

OUTPUT

MUTANT

OUPUT

MUTANT

TC01

TC02

TC03

MUTATION SCORE:

The mutation score is defined as the percentage of killed mutants with the total number of

mutants.

54

Mutation Score=(Killed mutants/total number of mutants)*100

=

From the above we can conclude that Mutant score is ,so that the above test cases are

 test cases.

VIVA VOCE QUESTIONS:

1. What is Path Testing?

2. What is Loop Testing?

3. What are the test cases to be considered while loop testing?

4. What is Mutant?

5. Difference between Primary Mutants & Secondary Mutants?

6. What is meant by live mutant?

7. What is meant by killed mutant?

8. How do you calculate the Mutation Score?

55

EXPERIMENT-13

AIM: Design and develop a program in a language of your choice to solve the triangle problem defined as

follows : Accept three integers which are supposed to be the three sides of triangle and determine if the

three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a

triangle at all. Derive test cases for your program based on decision-table approach, execute the test cases

and discuss the results

PROGRAM:

#include<stdio.h>

int main()

{

int a,b,c;

char istriangle;

printf("enter 3 integers which are sides of triangle\n");

scanf("%d%d%d",&a,&b,&c);

printf("a=%d\t,b=%d\t,c=%d",a,b,c);

if(a<b+c && b<a+c && c<a+b) // to check is it a triangle or not

istriangle='y';

else

istriangle ='n';

if (istriangle=='y')

if ((a==b) && (b==c))

printf("equilateral triangle\n");

else if ((a!=b) && (a!=c) && (b!=c))

printf("scalene triangle\n");

else

printf("isosceles triangle\n");

else

printf("Not a triangle\n");

return 0;

}

56

DESCRIPTION:

DECISION TABLE BASED TESTING:

A decision table is an excellent tool to use in both testing and requirements management.

Essentially it is a structured exercise to formulate requirements when dealing with complex business

rules. Decision tables are used to model complicated logic.

In a decision table, conditions are usually expressed as true (T) or false (F). Each column in the

table corresponds to a rule in the business logic that describes the unique combination of circumstances

that will result in the actions.

Decision tables can be used in all situations where the outcome depends on the combinations of

different choices, and that is usually very often. In many systems there are tons of business rules where

decision tables add a lot of value.

Steps for Constructing Decision Table and generating Test cases:

1. Analyze the requirement and create the first column

2. Add Columns

3. Reduce the Table

4. Determine Actions

5. Write Test Cases

57

DECESION TABLE:

RULES R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

Condition

Stub

C1:a<b+c F T T T T T T T T T T

C2: b<a+c - F T T T T T T T T T

C3: c<a+b - - F T T T T T T T T

C4: a=b - - - T T T T F F F F

C5: a=c - - - T T F F T T F F

C6:b=c - - - T F T F T F T F

Action

Stub

A1: Not a

Triangle

X

X

X

A2: Scalene

Triangle

 X

A3: Isosceles

Triangle

 X X X

A4: Equilateral

Triangle

X

A5: Impossible X X X

58

TEST CASES:

Test case

ID

Description

Input

Expected
Output

Actual

Output

Status a b C

TC01

TC02

TC03

TC04

TC05

TC06

59

EXPERIMENT-14

AIM:Understand The Automation Testing Approach (Theory Concept)

DESCRIPTION:

Automation Automation is making a process automatic eliminating the need for human intervention. It is a

self-controlling or self-moving process. Automation Software offers automation wizards and commands of

its own in addition to providing a task recording and re-play capabilities. Using these programs you can

record an IT or business task.

Benefits of Automation

 Fast

 Reliable

 Repeatable

 Programmable

 Reusable

 Makes Regression testing easy

 Enables 24*78 Testing Robust verification.

INTRODUCTION TO SELENIUM

1. History of Selenium

• In 2004 invented by Jason R. Huggins and team.

• Original name is JavaScript Functional Tester [JSFT]

• Open source browser based integration test framework built originally by

Thoughtworks.

• 100% JavaScript and HTML

• Web testing tool

• That supports testing Web 2.0 applications

60

• Supports for Cross-Browser Testing(ON Multiple Browsers)

• And multiple Operating Systems

• Cross browser – IE 6/7, Firefox .8+, Opera, Safari 2.0+

2. What is Selenium?
• Acceptance Testing tool for web-apps

• Tests run directly in browser

• Selenium can be deployed on Windows, Linux, and Macintosh.

• Implemented entirely using browser technologies -

 JavaScript

 DHTML

 Frames

3. Selenium Components
 Selenium IDE

 Selenium Core

 Selenium RC

3.1 Selenium IDE
 The Selenium-IDE (Integrated Development Environment) is the tool you

 use to develop your Selenium test cases.

 It is Firefox plug-in

 Firefox extension which allows record/play testing paradigm

 Automates commands, but asserts must be entered by hand

 Creates the simplest possible Locator

 Based on Selenese

3.1.1 OVERVIEW OF SELENIUM IDE:

A. Test Case Pane:
· Your script is displayed in the test case pane.

· It has two tabs.

· one for displaying the command (source)

· and their parameters in a readable “table” format.

61

B. Toolbar: The toolbar contains buttons for controlling the execution of your test cases, including a

step feature for

C. Menu Bar:
· File Menu: The File menu allows you to create, open and save test case and test suite files.

· Edit Menu: The Edit menu allows copy, paste, delete, undo and select all operations for

editing the commands in your test case.

· Options Menu: The Options menu allows the changing of settings. You can set the timeout

value for certain commands, add user-defined user extensions to the base set of Selenium

commands, and specify the format (language) used when saving your test cases.

D. Help Menu:

INTRODUCING SELENIUM COMMANDS

The command set is often called selenese. Selenium commands come in three “flavors”:

Actions, Accessory and Assertions.

a. Actions: user actions on application / Command the browser to do something.

Actions are commands that generally manipulate the state of the application.

1. Click link- click / Clickandwait

2. Selecting items

b. Accessors: Accessors examine the state of the application and store the results in variables, e.g.

"storeTitle".

c. Assertions: For validating the application we are using Assertions

1. For verifying the web pages

2. For verifying the text

3. For verifying alerts

Assertions can be used in 3 modes:

62

· assert

· verify

· waitFor

Example: "assertText","verifyText" and "waitForText".

NOTE:

1. When an "assert" fails, the test is aborted.

2. When a "verify" fails, the test will continue execution

3. "waitFor" commands wait for some condition to become true

COMMONLY USED SELENIUM COMMANDS

These are probably the most commonly used commands for building test.

open - opens a page using a URL.

click/clickAndWait - performs a click operation, and optionally waits for a new page to load.

verifyTitle/assertTitle - verifies an expected page title.

verifyTextPresent- verifies expected text is somewhere on the page.

verifyElementPresent -verifies an expected UI element, as defined by its HTML tag, is present on the
page.

verifyText - verifies expected text and it‟s corresponding HTML tag are present on the page.

verifyTable - verifies a table‟s expected contents.

waitForPageToLoad -pauses execution until an expected new page loads. Called automatically when
clickAndWait is used.

waitForElementPresent -pauses execution until an expected UI element, as defined by its HTML tag, is
present on the page.

3.1.2 RECORDING AND RUN SETTINGS

When Selenium-IDE is first opened, the record button is ON by default.

63

During recording, Selenium-IDE will automatically insert commands into your test case based on your
actions.

a. Remember Base URL MODE - Using Base URL to Run Test Cases in Different Domains

b. Record Absolute recording mode – Run Test Cases in Particular Domain.

3.1.3 RUNNING TEST CASES

Run a Test Case Click the Run button to run the currently displayed test case. Run a Test Suite Click the
Run All button to run all the test cases in the currently loaded test suite.

Stop and Start The Pause button can be used to stop the test case while it is running. The icon of this
button then changes to indicate the Resume button. To continue click Resume.

Stop in the Middle You can set a breakpoint in the test case to cause it to stop on a particular command.
This is useful for debugging your test case. To set a breakpoint, select a command, right-click, and from the
context menu select Toggle Breakpoint.

Start from the Middle You can tell the IDE to begin running from a specific command in the middle of
the test case. This also is used for debugging. To set a startpoint, select a command, right-click, and from
the context menu select Set/Clear Start Point.

Run Any Single Command Double-click any single command to run it by itself. This is useful when
writing a single command. It lets you immediately test a command you are constructing, when you are not
sure if it is correct. You can double-click it to see if it runs correctly. This is also available from the context
menu.

Test Suite:

A test suite is a collection of tests. Often one will run all the tests in a test suite as one continuous batch-
job. When using Selenium-IDE, test suites also can be defined using a simple HTML file. The syntax again
is simple. An HTML table defines a list of tests where each row defines the filesystem path to each test.

INSTALLING THE IDE

64

Using Firefox, first, download the IDE from the SeleniumHQ downloads page Firefox will protect

you from installing addons from unfamiliar locations, so you will need to click „Allow‟ to proceed with the

installation, as shown in the following screenshot.

Select Install Now. The Firefox Add-ons window pops up, first showing a progress bar, and when the
download is complete, displays the following.

Restart Firefox. After Firefox reboots you will find the Selenium-IDE listed under the Firefox Tools
menu.

65

When downloading from Firefox, you‟ll be presented with the following window.

