Practices for analysis,
evaluation, and perception of
software process, as well as
learning for strong attention
to small details for accurately
identifying all problems and

bugs quickly and effectively.
Communication process to
collaborate with developers
or designers and precisely
describe bugs to be
eliminated.

Software
Testing and
Validation

Lab Manual

Dr Paras Kothari

: tute of Tesiis s
ndia NJR st o
o O yaale

i\

' Dan\ﬂa\ Kumar Pem
'\Pt'mc'lpa“

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

B.Tech. : Computer Science & Engineering

Scheme & Syllabus
IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

Teaching & Examination Scheme

4" Year - VIII Semester

THEORY
Course Contact
8N | Categ hrs/week Marks e
o Cod Titl Exm
= - " L{T| P |5 | 1A | ETE | Total
1 gg(cl/ 8CS4-01 Big Data Analytics 3 lol o 3 30 | 120 | 150 3
2 |OE Open Elective - II 3ol o 3 30 | 120 | 150 3
Sub Total o| 0 60 | 240 | 300 6
PRACTICAL & SESSIONAL
3 |PCC 8CS4-21 | Big Data Analytics Lab ol o 2 2 30 20 50 1
4 | PCC 8CS4-22 | Software Testing and
Validation Lab 0]0] 2 2 [30| 20 | S0 1
S5 | PSIT 8CS7-0 | Project 310 0 450 7
6 Social Outreach,
E‘ZDE 8CS8-00 | Discipline &Extra 25 | 0.5
Curricular Activities
Sub-Total [O [O 4 4 120 | 80 475 9.5
TOTAL OF VIII SEMESTER | 6 | O 4 10 (180 | 320 | 775 | 15.5
L: Lecture, T: Tutorial, P: Practical, Cr: Credits
ETE: End Term Exam, IA: Internal Assessment
\nstitute of Technolo%)
L ndia R /‘oj;
For It ° 24l
-~ Pa nkal Kuma

QPnnc\Pa“

RAJASTHAN TECHNICAL UNIVERSITY, KOTA
Scheme & Syllabus
IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

‘ 8CS4-22: Software Testing and Validation Lab

Credit: 1 Max. Marks:50 (IA:30, ETE:20)
OL+0T+2P End Term Exam: 2 Hours
SN List of Experiments

1 a) Write a program that calculates the area and perimeter of the circle.

And find the Coverage & Test Cases of that program using JaButi Tool.

b) Write a program which read the first name and last name from console
and matching with expected result by using JaBuTi.

c¢) Write a program that takes three double numbers from the java console
representing , respectively, the three coefficients a,b, and ¢ of a
quadratic equation.

d) Write a program that reads commercial website URL from a url from file
.you should expect that the URL starts with www and ends with .com.
retrieve the name of the site and output it. For instance, if the user
inputs www.yahoo.com, you should output yahoo. After that find the
test cases and coverage using JaButi.

e) Write a program for a calculator and find the test case and coverage and
Def-use-graph.

f) Write a program that reads two words representing passwords from the
java console and outputs the number of character in the smaller of the
two. For example, if the words are open and sesame, then the output
should be 4, the length of the shorter word, open. And test this program

\ndia NR \nstitute 01 Tecl
For !) 3 e
- Panka) Kumar Perv

2 | Analyse the performance of following website using JMeter.

Site Website Type
Amazon Amazon.com shopping
Flip kart Flipkart.com shopping
Railway reservation Irctc.co.in Ticket booking site
Train searching Erail.in Train searching
3 Calculate the mutation score of programs given in 1(a) to 1 (f) using jumble
Tool.

4 Calculate the coverage analysis of programs given in 1 (a) to 1 (f) using
Eclemma Free open source Tool.

Office of Dean Academic Affairs
Rajasthan Technical University, Kota

Scheme & Syllabus of 4" Year B. Tech. (CS) for students admitted in Session 2017-18 onwards.Page 10

5 Generate Test sequences and validate using Selenium tool for given websites
below:
Site Website Type
Amazon Amazon.com shopping
Flip kart Flipkart.com shopping
Railway reservation Irctc.co.in Ticket booking site
Train searching Erail.in Train searching

1 -‘y""“ﬂu\j
\ndia NR \nstitute of \eu/,’
for Tec"O n i
Gon
- Panka) Kumar P
(Pt'mmpa\)

orw

Software Testing and Validation Lab
EXPERIMENT 1:

AIM: Consider an automated banking application. The user can dial the bank from a personal computer,
provide a six-digit password, and follow with a series of keyword commands that activate the banking

function. The software for the application accepts data in the following form:

Area Code Blank or three-digit number

Prefix Three-digit number, not beginning with 0 or 1
Suffix Four-digit number

Password Six-character alphanumeric

Commands "Check status", "Deposit", "Withdrawal"

Design ad-hoc test cases to test the system.
DESCRIPTION:-
Ad-hoc Testing:

Ad-hoc testing is an informal and improvisational approach to assessing the viability of a
product. An ad-hoc test is usually only conducted once unless a defect is found. Commonly used in
software development, ad hoc testing is performed without a plan of action and any actions taken are not

typically documented. Testers may not have detailed knowledge of product requirements. Ad hoc testing

jndia R \nstitute of Technolot
Because the approach is non-methodical, ad hoc tesging can nl 1SS tlaws tho%\af queid G\L’\found ina

is also referred to as random testing and monkey testing.

more structured testing system. However, the lack of formal requlrements.g\/so mewa\s\(umabg $0us flaws

can be attended to more quickly than if they had to be approached in a mor\P's“}bl%matlc fashion.

TEST CASES:

Status
TestCase ID Expected Pass/Fai 1)
Test Step Description Test Data result Actual result
validation of area enter the 3 digit area
code code if non- local and
Blank if local.
TCO1
validation of area enter the 3 digit area
code code if non- local and
Blank if local.
TCO02
validation of area enter the 3 digit area
code code if non- local and
Blank if local.
TCO03
validation of area enter the 3 digit area
code code if non- local and
Blank if local.
Teod o R nstiute OF e
Validation of Prefix | enter a 3-digit nipypts. ol i O\K Al
prefix. It should not ‘C\?’T‘E‘am‘a‘ Kumar Per¥
begin principa)
TCO5 with 0 (or) 1.

Validation of Prefix | enter a 3-digit number
prefix.It should not
Teoe begin with 0 (or) 1.
Validation of enter a 3-digit number
Prefix prefix.It should not
begin
TCO7 with 0 (or) 1.
Validation of enter a 4-digit
TCOS Suffix number suffix.
Validation of enter a 4-digit
TC09 Suffix number suffix.
Validation of enter a Six-
Password character
alphanumeric
TC10 password.
Validation of enter a Six-
Password character
alphanumeric
TCl11 assword. . Technoio}
Validation of inter a Six- £or Tec) \ndia ‘i‘.’R_\ﬂwﬁﬁé(L\c;@
Password character U’m’i“ , [Porw
- Panka) Kuma
alphanumeric '\Pr'\nc'\pa\)
TC12 password.

Validation of operate the commands
commands "Check
status","Deposit",
"Withdrawl".
TC13
Validation of Operate the commands
commands "Check
status","Deposit",
TC14
"Withdrawl".
Validation of operate the commands
commands "Check
status","Deposit",
"Withdrawl".
TCI15

For it

s \ndh

aNR nstitute of et Q

o .
¢ panka) i \
(P rincipa)

VIVA VOCE QUESTIONS:
1. What are the Myths of Software Testing?

2. What are the different goals of Software Testing?

3. Is Exhaustive software testing possible?

4. What is the difference between Verification & Validation?
5. What is a Failure?

6. What is a Bug?

7. What is a Error?

8. What is Testware?

9. What is Incident?

10 .What is Test Oracle?

For !

y \ndia

. ‘ T 3CNIWIVY)
\JR Institute OF 17
R

' oanka\ Kumal pPomw

Aaacinal
\?nnC\Pa)

EXPERIMENT-2

AIM: Consider an automated banking application. The user can dial the bank from a personal computer,
provide a six-digit password, and follow with a series of keyword commands that activate the banking

function. The software for the application accepts data in the following form:

Area Code Blank or three-digit number

Prefix Three-digit number, not beginning with 0 or 1
Suffix Four-digit number

Password Six-character alphanumeric

Commands "Check status", "Deposit", "Withdrawal"

Design the test cases to test the system using following Black Box testing technique:

BVA, Worst BVA, Robust BVA, Robust Worst BVA

DESCRIPTION:
BOUNDARY VALUE ANALYSIS:

Boundary value analysis is the process of testing between extreme ends or boundaries between

. . B e of TeClo
partitions of the input values. So, these extreme ends like min, m1n4c,m“d‘\:a1NJBﬂD§}\w}ax- akacy are called

L : For ! Al
boundary values and the testing is called "boundary testing". f\’ S
The basic idea in boundary value testing is to select input variable values at the:f: P

1. Minimum

10

2. Just above the minimum
3. A nominal value

4. Just below the maximum
5. Maximum

ROBUST BVA:

Robustness testing can be seen as an extension of Boundary Value Analysis. The idea behind
Robustness testing is to test for clean and dirty test cases. By clean I mean input variables that lie in the
legitimate input range. By dirty I mean using input variables that fall just outside this input domain. In
addition to the aforementioned 5 testing values (min, min+, nom, max-, max) we use two more values for

each variable (min-, max+), which are designed to fall just outside of the input range.
WORST BVA:

Boundary Value analysis uses the critical fault assumption and therefore only tests for a single
variable at a time assuming its extreme values. By disregarding this assumption we are able to test the
outcome if more than one variable were to assume its extreme value. In an electronic circuit this is called

Worst Case Analysis.
ROBUST WORST BVA:

If the function under test were to be of the greatest importance we could use a method named
Robust Worst-Case testing which as the name suggests draws it attributes from Robust and Worst-Case
testing. Test cases are constructed by taking the Cartesian product of the 7-tuple set defined in the
Robustness testing chapter. Obviously this results in the largest set of test results we have seen so far and

requires the most effort to produce

f Teohivivad

jute O
ndia NOR \nstitu
Forl Indi ° %\c\\tv\
ﬁ mar pon

TEST CASES:

TEST CASES USING BOUNDARY VALUE ANALYSIS:

11

Area Code Prefix Suffix Password Command
Min value blank 200 0 a0A0a0 S/D/W
Min+ value 11 201 1 b1B1bl SD/SW/DS
Max Value 934 999 9999 797979 SDW
Max- value 863 998 9998 x8X8x8Y SD/SW/DS
Nominal value 473 500 5000 mSM5m5 SD
Test Case | Area
ID Code Prefix Suffix Password | Command Expected output
TCO1
TCO02
TCO03
TC04
. . \j\e 0‘-:3‘4\. '»J
TCO05 - \ndid R \nstit ,;ﬂ\
Fof - R ef——
on . porw

k?r'm(‘o'\Pa“

TEST CASES USING ROBUST BVA:

12

Area Code Prefix Suffix Password Command
Min- value 0 199 999 l@#$% no input
Min value Blank 200 1111 a0A0a0 S/D/W
Min+ value 11 201 1112 b1Bl1bl SD/SW/DS
Max value 934 999 9999 797979 SDW
Max- value 863 998 9998 x8X8x8 SD/SW/DS
Max+ value 999 1000 10000 ><{} WDS
Nominal value 473 500 5000 mSM5m5 SD
Test Area
CaselD Code Prefix Suffix Password Command Expected output
TCO1
TCO02
TCO03
TCO04
d instute of Tech 218
 \ndia NIR 10
TCOS ehi e T gated
3 porw
-~ Panka) Kyma

(Prin

cipal)

TEST CASES USING WORST CASE TESTING:

13

Area Code Prefix Suffix Password Command
Min value blank 200 0 a0A0a0 S/D/W
Min+ value 11 201 1 bl1B1bl SD/SW/DS
Max Value 934 999 9999 7979279 SDW
Max- value 863 998 9998 x8X8xY SD/SW/DS
Nominal
value 473 500 5000 mS5SM5m5 SD
Test Area
CaselD Code Prefix Suffix Password Command Expected output
TCO1
TCO02
TCO03
TC04
TCO05 ' f Technolog)

i NIR-nsUe ==
For ! J\c\\ 0”\
]

VIVA VOCE QUESTIONS:
1. Mention some of the static & dynamic testing techniques?
2. What is an equivalence partition?
3. What is the purpose of test completion?
4. When should testing be stopped?
5. How many no of test cases are needed in BVA?
6. How many no of testcases are needed in ROBUST BVA?
7. How many no of testcases are needed in Worst CASE Testing ?
8. Faults found ,should be originally documented by whom?
9. Why does BV A provide good testcases?

10.What is test coverage?

y \ndia NR \nstitute ©

Fort

f Techiots
Frao

Aaacinal
\?nnC\Pa)

CY" Dan\(a\ Kuma{ PO

14

15

EXPERIMENT-3

AIM: Consider an application that is required to validate a number according to the following simple
rules

e A number can start with an optional sign.

e The optional sign can be followed by any number of digits.

e The digits can be optionally followed by a decimal point, represented by a period.
e If'there is a decimal point, then there should be two digits after the decimal.

e Any number-whether or not it has a decimal point, should be terminated a blank.
e A number can start with an optional sign.

e The optional sign can be followed by any number of digits.

e The digits can be optionally followed by a decimal point, represented by a period.
e If'there is a decimal point, then there should be two digits after the decimal.

¢ Any number-whether or not it has a decimal point, should be terminated a blank. Generate test
cases to test valid and invalid numbers.

DESCRIPTION:
DECISION TABLE BASED TESTING:

A decision table is an excellent tool to use in both testing and requirements management.
Essentially it is a structured exercise to formulate requirements when dealing with complex

business rules. Decision tables are used to model complicated logic.

In a decision table, conditions are usually expressed as true (T) or false (F). Each (‘(\hl‘""l in the

of | B
that will result in the actions. Ton pPorw
. panka) Kumar

Pnnc\Pa“

fule OF \E¥
table corresponds to a rule in the business logic that describes the unif nd\awi?‘lbmaw @renymstances
C

16

Decision tables can be used in all situations where the outcome depends on the combinations of

different choices, and that is usually very often. In many systems there are tons of business rules where

decision tables add a lot of value.

Steps for Constructing Decision Table and generating Test cases:

1. Analyze the requirement and create the first column

2. Add Columns

3. Reduce the Table

4. Determine Actions

5. Write Test Cases

DECISION TABLE:
Rule Rule Rule
Rule1 |2 3 4
C1:Number can start with optional sign T T T T
C2:Optional sign can be followed by any num of
Condition
digits T T T
Stub __ :
C3:Digits can be optionally followed by a
decimal point T T T
C4:There should be 2 digits after a decimal point F T
C5:Number should be terminated with a blank F T T T
Action Al:Valid number * *
Stub A2:invalid number * *
+ te of 1ECAN0IVYS
| yndia NR Insti

Fort

Tyzalod

CY" oanka\ Ku.ma[PO
'\Pr'\nC\Pa\)

17

TEST CASES:
Test no.of expecte
case decimal decimal terminatio d
ID optional sign Digits point digits n blank output
TCO1
TCO02
TCO3
TC04
TCO5
VIVA VOCE QUESTIONS:
1. What is Decision Table Based Testing?
2. What is Error Guessing?
3. What are the different notations used in Cause Effect Graph?
4. What is strong equivalence class?
5. What is weak equivalence class?
6. How do you generate the test cases in Decision Table Based Testing?
jute of Technol %)
. \ndia NR Instil —
For | o G
U’m panka) Kume! pert

‘\Pr'\nC'\Pa“

18

EXPERIMENT-4

AIM: Generate test cases using Black box testing technique to Calculate Standard Deduction on Taxable
Income. The standard deduction is higher for tax payers who are 65 or older or blind. Use the method given
below to calculate tax.
1. The first factor that determines the standard deduction is the filing status. The basic standard deduction
for the various filing status are:

Single $4,750

Married, filing a joint return $9,500

Married, filing a separate return $7,000

2. If a married couple is filing separate returns and one spouse is not taking standard Deduction, the other
spouse also is not eligible for standard deduction.

3. An additional $1,000 is allowed as standard deduction, if either the filer is 65 yrs or the spouse is 65 yrs
or older (the latter case applicable when the filing status is “Married” and filing “joint”).

4. An additional $1,000 is allowed as standard deduction, if either the filer is blind or the spouse is blind
(the latter case applicable when the filing status is

“married” and filing “joint”).

DESCRIPTION:
BLACK-BOX TESTING:

' Black-box testing is a method of software testing that examines the functionality of an application
without peering into its internal structures or working. This method of test can be applied to virtually every
level of software testing: unit, integration, system and acceptance. It typically comprises most if not all
higher level testing ,but can also dominate unit testing as well.

EQUIVALENCE CLASS: it of)100Y
Equivalence Partitioning also called as equivalence cquq parti s g @é“lt 1ssal%%%g‘e\dof\ ECP. It is

a software testing technique that divides the input test data of the appllcatl(ﬁﬁ}%car teﬁ\‘rKl“ﬁ{‘a{»B chlpartition

at least once of equivalent data from which test cases can be derived. An advantage| E;mnmpa\lpproach is it

reduces the time required for performing testing of a software due to less number of test cases.

EQUIVALENCE CLASSES:

C1= Status of the {Single||Married}
C2=Age of the {>=65&<65}
C3=Eye sight {Blind || No blind}

C4=Class {separate || joint}

TEST CASES

19

TEST
CASE
ID

Class

Covered

Status of
the Filer

Age of
the
Filer

sight

Class

Expected
output

ActualOutput
(Pass
/Fail)

SD1

SD2

SD3

SD4

SD5

SD6

SD7

SD8

SD9

SD10

For !

y \ndia

)

Aot

. panka)

\UR nstitute o117
R

f Teohivivad

kumar Per™

‘\Pr\nC'\Pa“

VIVA VOCE QUESTIONS:

What is a V-Model?

What is Strong Equivalence Class?

What is Weak Equivalence Class?

What are Semi Random Test Cases?

What is Black Box Testing?

Why we split testing into different stages?

What is Fault Masking?

What is the Difference between STLC & SDLC?

What is the difference between Test Scenarios & Test Cases & Test Script?
10 What are the Test Delivarables?

W e kW=

e of T
ndia N R\ \nstitu
Forl Indi ° %\c\\ CV\

" pankaj Kumar Porw
?nnC\Pa“

EXPERIMENT-5

AIM: Consider the following program segment:

1. int max (int i, int j, int k)

2.4

3.int max;

4.if (i>]) then

5.if (i>k) then

6..max=i;

7.else max=k;

8.else if (j > k)

9. max=j

10.else max=k

11.return (max);

12.}

a) Draw the control flow graph for this program segment
b) Determine the cyclomatic complexity for this program
¢) Determine the independent paths

DESCRIPTION:-

CONTROL FLOW GRAPH:

elements named process blocks, decisions, and junctions.
o The flow graph is similar to the earlier flowchart, with which it is not to be confused.

e The nodes are represented in the following way

O oot

" \nsti
, \ndia \OR
Fol = O&{d\ QV‘
e Flow Graph Elements: A flow graph contains four different types oﬁmucnts k\ Dechasis (2)

Junctions (3) Case Statements. pnnc\pa\)
1. Decisions:

= A decision is a program point at which the control flow can diverge.

The control flow graph is a graphical representation of a program's control structure. It uses the

21

22

* Machine language conditional branch and conditional skip instructions are
examples of decisions.
* Most of the decisions are two-way but some are three way branches in control

flow.

2. Case Statements:
= A case statement is a multi-way branch or decisions.
= Examples of case statement are a jump table in assembly language, and the
PASCAL case statement.
* From the point of view of test design, there are no differences between Decisions

and Case Statements

3. Junctions:
* A junction is a point in the program where the control flow can merge.
= Examples of junctions are: the target of a jump or skip instruction in ALP, a label

that is a target of GOTO.

CYCLOMATIC COMPLEXITY:
Cyclomatic complexity is a source code complexity measurement that is bemg CO{M,] teg tnja

number of coding errors. It is calculated by developing a Con&rb(?liF i 041 Nf)g‘f the%*%:ﬁate;\’asures

the number of linearly-independent paths through a program module. ‘C\/CY‘

- pankaj Kuma' P
In other words, the cyclomatic complexity metric is based on the numb@nnn\%alalsmns in a

o

program. It is important to testers because it provides an indication of the amount of testing (including

reviews) necessary to practically avoid defects.

23

In other words, areas of code identified as more complex are candidates for reviews and
additional dynamic tests. While there are many ways to calculate cyclomatic complexity, the easiest way
is to sum the number of binary decision statements (e.g. if, while, for, etc.) and add 1 to it. A more formal

definition regarding the calculation rules is provided in the glossary.

Cyclomatic complexity is measured in three ways:
I. Cyclomatic complexity =E - N +P
Where, E = number of edges in the flow graph.
N = number of nodes in the flow graph.
P = number of Procedures in the flow graph
II. Cyclomatic complexity = D+1
Where, D= number of decision statements in the flow graph

II. Cyclomatic complexity = number of regions in graph G.

INDEPENDENT PATHS:
The number of different paths from the stating node of the flow graph to the ending node of the
flow graph. A graph may have 1 or more independent paths.

, \ndia \IR \nstitute of ;/ 0y
For it ﬁma e

7 pana et P
'\Pr'\nC\Pa“

A)CONTROL FLOW GRAPH:

>

CHHHG

R2 C R4
R1 D
7
Sk
(5)
S e
\ndia NIR
For ! ©

24

BICYCLOMETRIC COMPLEXITY:

V(G)=e-n+2P

V(G)=d+1

V(G)=no.of regions in graph G

QO INDEPENDENT PATHS:

VIVA VOCE QUESTIONS:

1) What is Control Flow Graph?

2) What is Cyclomatic Complexity?

3) How do you determine no of Independent paths in a program segment?
4) What is White Box Testing?

5) What is meant by Decision Node?

6) What is the difference between Segment & Path Segment?

7) What is the Junction Node?

For !

y \ndia

NJR Institute 01157
R

' Danka\ KumBY pPomw

Aaacinal
\Pnn0933

<

{ Tecnnuivial

25

EXPERIMENT-6

AIM: source code of simple insertion sort implementation using arrays in ascending order in ¢

programming language

PROGRAM:
1. #include<stdio.h>
2. Int main()
3. 4
4. IntLj,s,temp,a[20];
5. Printf(“Enter total elements”);
6. Scanf(“%d”,&s);
7. Printf(“Enter %d elements”,s);
8. For(i=0;i<s;i++)
9. Scanf(*“%d”,a[i]);
10. For(i=0;i<s;i++)
1. {
12. Temp=a][i];
13. J=i-1;
14. While((temp<a[j])&&(7>=0))
15.
16. a[j+1]=a[j];
7. j5-1;
18. }
19. a[j+1]=temp;
20. %}
21. Printf(“after sorting”);
22. For(i=0;i<s;i++)
23. Printf(“%d”,a[1]);
24. return O;
25. %

Fort

y \ndia

\JR Institute OF 17
R

ﬁm panka) Kuma! P

'\?r'\nC\Pa\)

f Teohivivad

26

27

a) Draw control flow graph

b) Determine the cyclomatic complexity

c¢) Determine independent paths.

d) Design test cases for this program segment.

A) CONTROL FLOW GRAPH:

C e

ute of Tech 5100y
T ndia NOR \nstitu
‘l

B) CYCLOMATIC COMPLEXITY:

a. V(g)=ent2p=
b. V(g)=d+1 =

c. No ,,of regions: v(g)=

C) INDEPENDENT PATHS :
D) TEST CASES :
Test cases Input Expected Output Independent Path
TCO01
TCO02
TCO3
TC04
VIVA VOCE QUESTIONS:

1) What is the need of White Box Testing?

2) What is the difference between White Box & Black Box Testing?
3) What is meant by Basis Path Testing?

4) Discuss the applications of Path testing?

5) What is Graph Matrix?

6) What is static testing? a R nsttute of Techn010%y

Forl . © %\c\@

P rincipal)

EXPERIMENT-7

AIM: Consider a system having an FSM for a stack having the following states and Transitions.
STATES:

Initial: Before creation

Empty: Number of elements =0

Holding:Number of elements > 0, but less than the maximum capacity.

Full: Number of elements = maximum

Final: After destruction

Initial to Empty: Create

Empty to Holding, Empty to Full, Holding to Holding, Holding to Full: add

Empty to Final, Full to Final, Holding to Final:Destroy

Holding to Empty, Full to Holding, Full to Empty: Delete
Design test case for this FSM using state table- based testing.

DESCRIPTION:

29

State Transition testing, a black box testing technique, in which outputs are triggered by changes

to the input conditions or changes to 'state' of the system. In other words, tests are designed to execute

valid and invalid state transitions.

DERIVING TEST CASES: 0T .
| 8CHI vd

. \ndia IR \nstitute ©
e Understand the various state and transition and mark eagh'vahd and inyaljd stigg) 2\ CV\

. : on - wumar Per
e Defining a sequence of an event that leads to an allowed test ending state pankaj KUF“)
.. .. (Principd
e Fach one of those visited state and traversed transition should be noted down ®

e Steps 2 and 3 should be repeated until all states have been visited and all transitions traversed

30

e For test cases to have a good coverage, actual input values and the actual output values have to be

generated
ADVANTAGES:

e Allows testers to familiarize with the software design and enables them to design tests effectively.

e It also enables testers to cover the unplanned or invalid states.

Destroy / T7

Destroy / T6

Delete/T11

Create /T1

Delete/T10
ADD/TS

Add,T3

Add, T2

Holding

Delete/T9 =
Add /T4

STATE TABLE:
State / Event Create Add Delete Destroy
Initial Empty / T1 Initial / TO Initial / TO Initia]_‘/_a_"]:ﬂ 5100y
pgaNRIET T
mpt mpt oldin, - Hripry /- @ R
Empty Empty / T1 Holding / T2 Flrnipry / T1 ‘C\/G[F D/\C'i“‘éo’\
(&)} . porw
- pankaj Kume!
Full / T3 '\P[.\T\C\pa\)

Holding Holding / Holding / T4 Empty / T9 Final / T8
T2
Full/ T5
Full Full / T3 Full / T3 Holding / T10 Final / T7
Empty / T11
Final Final / T6 Final / T6 Final / T6 Final / T6
TEST CASES:
Input Expected Output
Test Case ID State Event o/p Next State
TCO1
TCO02
TCO03
TC04
TCO05
TCO06
TCO07
Jia R Institute of l/ =
TCO8 | Ryaaten
a3t o or PO
TC09 - pankaj UM

k?rinC'\Pa“

TC10

TCI11

TC12

TCI13

TCl14

TCI15

TCI16

TC17

TC18

TCI19

TC20

TC21

TC22

TC23

VIVA VOCE QUESTIONS:

1. What is State Table Based Testing?
What is FSM?

What is meant by state transition?
What is meant by error guessing?

Each row of state table corresponding to what?

A T i

Each column of state table corresponding to what?

y \ndia
For b n

NJR Institute ©f

‘r"‘:gl. Jivigl

. G\
Gonal Kymar Per¥

-, panka)
'\Pr'\n

cipal)

32

33

EXPERIMENT-8

AIM :Given the following fragments of code, how many tests are required for 100% decision coverage ?

Give the test cases.

PROGRAM:
If width > length then
biggest dimension=width
If height > width
biggest dimension = height
end
else
biggest dimension = length
if height > length
biggest dimension = height
end if
end if
DESCRIPTION:

Branch coverage is also known as Decision coverage or all-edges coverage.It covers both the true
and false conditions unlikely the statement coverage.A branch is the outcome of a decision, so branch
coverage simply measures which decision outcomes have been tested. This sounds great because it takes

a more in-depth view of the source code than simple statement coverage.

A decision is an IF statement, a loop control statement (e.g. DO-WHILE or REPEAT-UNTIL), or
a CASE statement, where there are two or more outcomes from the statement. With an IF statement, the

exit can either be TRUE or FALSE, depending on the value of the logical condition that SROLRR ¢ TF.
\ndia \IR \nstitute 01 1=

P
ADVANTAGES OF DECISION COVERAGE: Fort © /5‘ 2l 0{\
T . porw
. panka) Kumar
e To validate that all the branches in the code are reached -\?r'\nc'\pa\)

e To ensure that no branches lead to any abnormality of the program*soperation

e [t eliminates problems that occur with statement coverage testing

DISADVANTAGES OF DECISION COVERAGE:

e This metric ignores branches within Boolean expressions which occur due to short-circuit

operators.

Decision Coverage=

TEST CASES:

Number of decision outcomes exercised

Total number of decision outcomes

Test case id

Input

Expected output

Actual Output

TCO01

TCO02

TCO03

TC04

VIVA VOCE QUESTIONS:

1) What is meant by Branch Coverage?

2) What is meant by Condition Coverage?

3) What is meant by Decision/Condition Coverage?

4) What is the criteria for Logic Coverage?

Fort

y \ndia NR \nstitute ©

f Techiots
Frao

'\?r'\nc'\Pa“

CY" Dan\(a\ Kuma{ PO

34

EXPERIMENT-9

35

AIM : To give the following code ., how much minimum number of test cases is required for full statement

and branch coverage ?
PROGRAM:

Read p

Read q

If p+q>100

Then print “large: endif
If p>50

Then print “p large” endif
DESCRIPTION:

STATEMENT COVERAGE:

Statement coverage is a white box testing technique, which involves the execution of all the

statements at least once in the source code. It is a metric, which is used to calculate and measure the

number of statements in the source code which have been executed. Using this technique, we can check

what the source code is expected to do and what it should not. It can also be used to check the quality of the

code and the flow of different paths in the program. The main drawback of this technique is that we cannot

test the false condition in it.

Advantage of statement coverage:

. itute Of TeoiivH
e [t verifies what the written code is expected to do and not to do, \ndid NJR Institv kd@

of | °

e It measures the quality of code written m Sl Kumar porw

e It checks the flow of different paths in the program and it also ensure that whe}hﬂn&‘.’l‘)@@: path are

tested or not.

36

Disadvantage of statement coverage:

e [t cannot test the false conditions.
e It does not report that whether the loop reaches its termination condition.

e It does not understand the logical operators.

Number of statements Executed
Statement coverage = x 100

Total number of statements in the source code

Branch Coverage:

Branch coverage is also known as Decision coverage or all-edges coverage.It covers both the true
and false conditions unlikely the statement coverage.A branch is the outcome of a decision, so branch
coverage simply measures which decision outcomes have been tested. This sounds great because it takes a

more in-depth view of the source code than simple statement coverage.

A decision is an IF statement, a loop control statement (e.g. DO-WHILE or REPEAT-UNTIL), or a
CASE statement, where there are two or more outcomes from the statement. With an IF statement, the exit

can either be TRUE or FALSE, depending on the value of the logical condition that comes after IF.
Advantages of decision coverage:

e To validate that all the branches in the code are reached
e To ensure that no branches lead to any abnormality of the program*soperation

e [t eliminates problems that occur with statement coverage testing

Disadvantages of decision coverage:

. .. o : . . NJR Institute of | l/—
e This metric ignores branches within Boolean expressiens which \'b\gtaat’\ due toPhart-cifiRA
For ! ° .‘)\c\‘\

operators. uom - vymar P

Number of decision outcomes exercised

Decision Coverage= x 100

Total number of decision outcomes

TEST CASES:

i) Statement Coverage (minimum) :

Test Case ID Input Expected Output

TCO1

ii) Branch Coverage (minimum):

Test Case ID Input Expected Output

TCO1

TCO02

VIVA VOCE QUESTIONS:

S AL I

What is meant by statement coverage?

What is meant by multiple condition coverage?

Explain what is Test Plan? What are the information that should be covered in TestPlan ?
What is test management review and why it is important?

What is the difference between Test Matrix & Tracebility Matrix?

Mention the different Categories of defects?

f Techilviy!

. jute O
What are the different types of test coverage techniqueSF? _ , \ndia NR \nstit @ @
of |
What is meant by an acceptance testing? t"\’

C‘T‘ Danka\ Kuma[pPomw
‘\Pr'\nC\Pa“

37

38

EXPERIMENT-10

AIM: Consider a program to input two numbers and print them in ascending order given below. Find all
du paths and identify those du-paths that are not feasible. Also find all dc paths and generate the test cases
for all paths (dc paths and non dc paths).

#include<stdio.h>

#include<conio.h>

1. void main ()

2.4

3inta,b,t;

4. Clrscr ();

5. Printf (“Enter first number”);

6. scanf (“%d”,&a);

7. printf(“Enter second number”);

8. scanf(“%d”,&b);

9.if (a<b){

10. t=a;

11.a=b;

12.b=t;

13.}

14. printf (“%d %d”, a, b);

15 getch ();

}
DESCRIPTION:
DU-PATHS:-
g R nsie A e
In a path segment if the variable is defined earlier and ghe last 0k Baso a c%‘npua ,Li?aalcm\e of that
variable then that path is termed as a du path. t\?’h oankaj Kuma" perw

'\?r'\nc'\Pa“
A sub-path in the flow is defined to go from a point where a variable is "defined", to a point where

it is "referenced", that is, where it is "used" - whatever kind of usage it is. Such a sub-path is called a

39

"definition-use pair" or "du-pair". The pair is made up of a "definition" of a variable and a "use" of the

variable.
DC-PATHS:-

* A path (i, ni, ..., nm, j) is called a definition-clear path with respect to x from node i to node j if it
contains no definitions of variable x in nodes (ni, ..., m , j).

* The family of data flow criteria requires that the test data execute definition-clear paths from each
node containing a definition of a variable to specified nodes containing c-use and edges

containing p-use of that variable.

CONTROL FLOW GRAPH:-

i \ndia NOR \nstitute of Technoiog)

Forl . © %\c\@

CY" Dan\(a\ Kuma{ PO
'\?r'\nc'\Pa“

Variable ,,a* Data Flow Graph:-

6:Define

Fort

ute 0f TRCHIVHS
12 NJR st —
\ndia) el oA

40

Variable ,b" Data Flow Graph:-

DU-PATHS

N a-\.nd'\a_NM\u\ei;-;.;
For | : -
ﬂaf‘/ggnka\ Kumar Per¥

'\Pr'\nc'\pa\)

41

Variable ,,t* Data Flow Graph:-

1,2,3,4,5,6,7,8

10:Define

Fort

y \ndia

. { Techivivi
NJR \nstitute O 1=
EeGICY

> ka)
- Pankaj ™
'\Pr'\nC\Pa\)

42

DU-PATHS N DC-PATHS

Variable Defined at

Used at

A

VIVA VOCE QUESTIONS:

1. What is data flow testing?
What are the different data flow anomalies?

What is the difference definition node & usage node?

What is du-path?
What is dc-path?

A T o

What are the different variants of Inspection process? ¢ |

y \ndia

NJR \nstitute ©
Gonst

. panka)

What is difference between static data flow testing & dynamic data flow testing?

Kumar Por¥
'\Pr'\nc'\Pa“

f Teohivivad

Ay

43

44

EXPERIMENT-11

AIM: Consider the program and generate possible program slices for all variables. Design at least one test
case from every slice.
#include<stdio.h>
#include<conio.h>
3. void main ()
4. {
3inta, b, t;
14. Clrscr ();
15. Printf (“Enter first number”);
16. scanf (“%d”,&a);
17. printf(“Enter second number”);
18. scanf(“%d”,&b);
19. if (a<b){
20.t=a;
21. a=b;
22.b=t;
23.}
14. printf (“%d %d”, a, b);
15 getch ();
}
DESCRIPTION:
One of the program analysis techniques is program slicing. The main applications of program
slicing include various software engineering activities such as program understanding, debugging, testing,

rogram maintenance, complexity measurement and so on. Program slicing is a feasible method u6 restrict
5 y > cl{ Y

: - NJR nstitute OF =7
the focus of a task to specific sub-components of a program. Jt can 2164088 NSEd to Srigact tn@s\iatements
Fort ° 2
of a program that are relevant to a given computation. T oankal Kumar porw

Aaacinal
\?nnC\Pa)

45

TEST CASES:-
Test Case 1d a b a b
T1 10 20 20 10
T2 20 10 20 10
T3 10 10 10 10

EXECUTION SLICE:-

The Set of statements executed under a Test Case is called as an Execution Slice of a program.

#include<stdio.h>
#include<conio.h>

1.void main ()

2.4

3.nta, b, t;

4.Clrscr ();

5.Printf (“Enter first number”);
6.scanf (“%d”,&a);
7.printf(“Enter second number”);

8.scanf(“%d”,&b);

9.if (a<b) {

10.t=a;

11.a=b;

ot N =

14, printf (“%d %d”, a, b); Tion o a Kaumer P
'\Pt'\nC\Pa‘)

15 getch ();
}

In the above Program the IF statement(9) is changed to “if(a==b)” then only the test case T3 has

to be re-run.

Test Case id a B a b

T3

DYNAMIC SLICE:-
The set of statements executed under a test case and having an effect on program output is called

as Dynamic Slice of a program.

#include<stdio.h>
#include<conio.h>

Ivoid main ()

24

3.nta, b, t;

4.Clrscr ();

5.Printf (“Enter first number”);
6.scanf (“%d”,&a);

7.printf(“Enter second number”);

8.scanf(*“%d”,&b);

9.if (a<b){

10.t=a;

11.a=b;

i }b:t; por oo MR mw%i\; o
14, printf (“%d %d”, a, b); TN Kamer PO
15 getch (); (principa)

}

46

47

In the above Program the IF statement(9) is changed to “if(a>b)” then only the test case T2 has to

be re-run.

Test Case id a B a b
T2

VIVA VOCE QUESTIONS:

1. What is Regression Testing?

2. Difference between Progressive & Regressive Testing?
3. What are the objectives of regression testing?

4. What are the types of Test Case Prioritization?

5.What are the different Prioritization techniques?

6. What is execution slice?

7. What is dynamic slice?

8. What is relevant slice?

f Techilviy!

| W sttt o L
For ! ‘nd‘ato\,ma %T\d\of\

' Danka\ Kuma[pPomw
‘\Pr'\nC\Pa“

48

EXPERIMENT-12

AIM:Consider the code to arrange the nos. in ascending order. Generate the test cases for relational
coverage, loop coverage and path testing. Check the adequacy of the test cases through mutation testing

and also compute the mutation score for each.

PROGRAM:
1.i=0;

2.n=4;

3.While (i<n-1)
4doj=1+1;
5.While (j<n)

6.do if A[i]<A[j]

7. Swap (A[i], A[j]);
8 end do;

9. 1=1+1;

10.end do

DESCRIPTION:
PATH TESTING:
Path Testing is a structural testing method based on the source code or algorithm and NOT based

on the specifications. It can be applied at different levels of granularity.
PATH TESTING TECHNIQUES:

e Control Flow Graph (CFG) - The Program is converted into Flow graphs by representing the

code into nodes, regions and edges.

e Decision to Decision path (D-D) - The CFG can be broken 'vtf)md\awg‘ﬂ\ c@\%yn Becysion
ort

paths and then collapsed into individual nodes.
o Independent (basis) paths - Independent path is a path through a DD-path graph Wthh cannot be

reproduced from other paths by other methods.

49

MUTATION TESTING:
Mutation testing is a structural testing technique, which uses the structure of the code to guide the
testing process. On a very high level, it is the process of rewriting the source code in small ways in order

to remove the redundancies in the source code.

These ambiguities might cause failures in the software if not fixed and can easily pass through

testing phase undetected.

. e of Tt ™7
. aNJR\nS‘\ —
oo T Ryrae?

CY" Dan\(a\ Kuma{ PO
'\?r'\nc'\Pa“

Control Flow Graph:

R4

50

51

Cyclomatic Complexity:

Cyclomatic Complexityis measured in three ways:

1. Cyclomatic complexity =E - N+ P
Where, E = number of edges in the flow graph.
N = number of nodes in the flow graph.

P = number of Procedures in the flow graph

V(G)=E-N+P

2. Cyclomatic complexity = number of regions in graph

V(G)=
3. Cyclomatic complexity = number of Decision nodes in the graph + 1
V(G)=
IndependentPaths:

The number of different paths from the starting node of the flow graph to reach the ending node of the

flow graph. A graph may have 1 or more independent paths.

f Teohivivad

, itute 0

. 3 NJR \T\S“ —
CT‘ panka) KuMe! P

'\?r'\nC\Pa\)

TEST CASES:

TID

INPUT EXPECTED

OUTPUT

OUTPUT

INPUTPATH

TCO1

TCO02

TCO3

ORIGINAL PROGRAM:
11=0;

2.n=4;

3.While (i<n-1)
4doj=1+1;

5.While (j<n)

6.do if A[i]<A[j]

7. Swap (A[i], A[i]);

8 end do;

9.1=1+1;

10.end do

MUTATED PROGRAM:
11=0;

2.n=4;

3.While (i<n+1) // M1
4doj=1+1;

5.While (j<n+1) // M2

For !

s \ndia

NJR nstitute ©

/
U’m pankaj Kume! per
‘\Pt'\nC'\Pa“

f Teohiviess

52

53

6.do if A[i]>=A[j] // M3
7. Swap (A[i], A[j]);

8 end do;

9. 1=1+1;

10.end do

KILLED MUTANT:
If the original program and mutant programs generate the same output, then that mutant is
killed by the test case. Hence the test case is good enough to detect the change between the

original and the mutant program.

LIVE MUTANT:
If the original program and mutant program generate different output, Mutant is kept alive.

In such cases, more effective test cases need to be created that kill all mutants.

TEST CASES:
TID ORIGINAL MUTANT
INPUT OUTPUT OUPUT MUTANT
TCO1
TCO02
TCO3
R Institte o BT
ndiaNR 10 —
forTen BT NFaten
MUTATION SCORE: S .
- Panka) Ku

. . : : orincipal
The mutation score is defined as the percentage of killed mutants with the R }?urllber of

mutants.

54

Mutation Score=(Killed mutants/total number of mutants)*100

From the above we can conclude that Mutant score is ,s0 that the above test cases are

test cases.

VIVA VOCE QUESTIONS:

—

. What is Path Testing?

. What is Loop Testing?

. What are the test cases to be considered while loop testing?

. What is Mutant?

. Difference between Primary Mutants & Secondary Mutants?
. What is meant by live mutant?

. What is meant by killed mutant?

(o <IN BN Y R R

. How do you calculate the Mutation Score?

ute 0f Teehivld
ndia NOR \nstitu e
For Indi -6\’ %\c\\tv\

CY" Dan\(a\ Kuma{ PO
'\?r'\nc'\Pa“

55

EXPERIMENT-13

AIM: Design and develop a program in a language of your choice to solve the triangle problem defined as
follows : Accept three integers which are supposed to be the three sides of triangle and determine if the
three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a
triangle at all. Derive test cases for your program based on decision-table approach, execute the test cases
and discuss the results

PROGRAM:

#include<stdio.h>

int main()

{

int a,b,c;

char istriangle;

printf("enter 3 integers which are sides of triangle\n");

scanf("%d%d%d",&a,&b,&c);

printf("a=%d\t,b=%d\t,c=%d",a,b,c);

if(a<b+c && b<atc && c<atb) //to check is it a triangle or not

istriangle="y";

else

istriangle ='n';

if (istriangle=="y")

if ((a==b) && (b==¢))

printf("equilateral triangle\n");

else if ((a!=b) && (al=c) && (b!=c))

printf("scalene triangle\n");

else itule of Technolot
e : ; \nstilu)
printf("isosceles triangle\n"); For | y \ndia ‘?R %\c\@
else Ten oanka) Kuma' porw
- Pan .
printf("Not a triangle\n"); '\?t'\nC\pa\)
return 0;

}

56

DESCRIPTION:
DECISION TABLE BASED TESTING:

A decision table is an excellent tool to use in both testing and requirements management.
Essentially it is a structured exercise to formulate requirements when dealing with complex business

rules. Decision tables are used to model complicated logic.

In a decision table, conditions are usually expressed as true (T) or false (F). Each column in the
table corresponds to a rule in the business logic that describes the unique combination of circumstances

that will result in the actions.

Decision tables can be used in all situations where the outcome depends on the combinations of
different choices, and that is usually very often. In many systems there are tons of business rules where

decision tables add a lot of value.
Steps for Constructing Decision Table and generating Test cases:
1. Analyze the requirement and create the first column
2. Add Columns
3. Reduce the Table
4. Determine Actions

5. Write Test Cases

\B -
3Gl

itute of
ndia NOR \nstitu e
for T 0 MR ol

‘C\/Ch?‘ ar porw

57

DECESION TABLE:
RULES Rl |R2|R3|R4 | R5|R6 R7 R8 R9 R10 R11
Cl:a<b+tc F|T|T|T|T|T T T T T T
C2: b<atc - |F T | T| T T T T T T
Condition | C3: c<atb - - T|T| T T T T T T
Stub C4: a=b - - |- T|T | T T F F F F
C5: a=c - - |- T | T|F F T T F F
C6:b=c - - - | T|F|T F T F T F
Al: Nota
Triangle % x| x
A2: Scalene X
Triangle
Action
A3: Isosceles X X X
Stub)
Triangle
A4: Equilateral
Triangle e
AS5: Impossible X | X X
» \e 0“?‘3'4\. v “»JV
, \ndia NIR \nstitu T
Fu W) ?" J\d\

'\Pr'\nC'\Pa“

58

TEST CASES:
o Input
: Actual
Description b C Expected Output Status
Output
TCO1
TCO02
TCO03
TCO04
TCO5
TCO06
For , \ndia NOR \nstitute Ol\d \’l/ 0y
of |)
ﬂa"fgnka\ Kumar Per¥

‘\Pr'mc'\pa\)

59

EXPERIMENT-14
AIM:Understand The Automation Testing Approach (Theory Concept)
DESCRIPTION:

Automation Automation is making a process automatic eliminating the need for human intervention. It is a
self-controlling or self-moving process. Automation Software offers automation wizards and commands of
its own in addition to providing a task recording and re-play capabilities. Using these programs you can

record an IT or business task.
Benefits of Automation
e Fast

Reliable

Repeatable
e Programmable

Reusable

Makes Regression testing easy

Enables 24*78 Testing Robust verification.
INTRODUCTION TO SELENIUM

1. History of Selenium
* In 2004 invented by Jason R. Huggins and team.

* Original name is JavaScript Functional Tester [JSFT]

: : o iengtitute Of TEC
« Open source browser based integration test framework built o\r,gﬁq;aaN:)Rb\psmm
of | o

—
EeGICY
Thoughtworks. ¢

o . porw
. . . panka) Kuma‘
* 100% JavaScript and HTML .?(-mc\pa\)

\

* Web testing tool
* That supports testing Web 2.0 applications

* Supports for Cross-Browser Testing(ON Multiple Browsers)
» And multiple Operating Systems
* Cross browser — IE 6/7, Firefox .8+, Opera, Safari 2.0+

2. What is Selenium?

* Acceptance Testing tool for web-apps

* Tests run directly in browser

* Selenium can be deployed on Windows, Linux, and Macintosh.
* Implemented entirely using browser technologies -

"1 JavaScript

" DHTML

[l Frames

3. Selenium Components

e Selenium IDE
e Selenium Core

e Selenium RC

3.1 Selenium IDE

e The Selenium-IDE (Integrated Development Environment) is the tool you
e use to develop your Selenium test cases.

e [tis Firefox plug-in

e Firefox extension which allows record/play testing paradigm

e Automates commands, but asserts must be entered by hand

e C(Creates the simplest possible Locator

e Based on Selenese

3.1.1 OVERVIEW OF SELENIUM IDE:

A.

Test Case Pane:

- Your script is displayed in the test case pane. g IR |nstitute of T
- It has two tabs. For | ﬁm?‘ O\N\c\\ CV\

" pankal Kuma{)Pow
- and their parameters in a readable “table” format. pnnc\pa

- one for displaying the command (source)

60

61

Command | selectWindow | 51|
Target | name=rnull | Find |
Walue |

B. Toolbar: The toolbar contains buttons for controlling the execution of your test cases, including a
step feature for
C. Menu Bar:
- File Menu: The File menu allows you to create, open and save test case and test suite files.

Edit Menu: The Edit menu allows copy, paste, delete, undo and select all operations for
editing the commands in your test case.
Options Menu: The Options menu allows the changing of settings. You can set the timeout
value for certain commands, add user-defined user extensions to the base set of Selenium
commands, and specify the format (language) used when saving your test cases.

D. Help Menu:

INTRODUCING SELENIUM COMMANDS

The command set is often called selenese. Selenium commands come in three “flavors™:

Actions, Accessory and Assertions.
a. Actions: user actions on application / Command the browser to do something.
Actions are commands that generally manipulate the state of the application.

1. Click link- click / Clickandwait
2. Selecting items
b. Accessors: Accessors examine the state of the application and store the results in variables, e.g.
"storeTitle".

. Techivivyld
c. Assertions: For validating the application we are using Asserti‘oiwncdia NJR \nstitute of d@
of |
1. For verifying the web pages ‘ .6’“‘/5‘ E Bow
al
2. For verifying the text i acipa)
3. For verifying alerts

Assertions can be used in 3 modes:

assert
verify
waitFor

Example: "assertText","verifyText" and "waitForText".
NOTE:

1. When an "assert" fails, the test is aborted.
2. When a "verify" fails, the test will continue execution

3. "waitFor" commands wait for some condition to become true

COMMONLY USED SELENIUM COMMANDS

These are probably the most commonly used commands for building test.

open - opens a page using a URL.

click/clickAndWait - performs a click operation, and optionally waits for a new page to load.
verifyTitle/assertTitle - verifies an expected page title.

verifyTextPresent- verifies expected text is somewhere on the page.

verifyElementPresent -verifies an expected Ul element, as defined by its HTML tag, is present on the
page.

verifyText - verifies expected text and it™s corresponding HTML tag are present on the page.
verifyTable - verifies a table™s expected contents.

waitForPageToLoad -pauses execution until an expected new page loads. Called automatically when
clickAndWait is used.

waitForElementPresent -pauses execution until an expected Ul element, as defined by its HTML tag, is

present on the page. ndia IR Institute of | 0{\ 0
3.1.2 RECORDING AND RUN SETTINGS For! Eal o\:ﬁf\d‘

" pankaj Kumar porw
When Selenium-IDE is first opened, the record button is ON by default. Pnnc\pa\)

62

63

During recording, Selenium-IDE will automatically insert commands into your test case based on your
actions.

a. Remember Base URL MODE - Using Base URL to Run Test Cases in Different Domains

b. Record Absolute recording mode — Run Test Cases in Particular Domain.

3.1.3 RUNNING TEST CASES

Run a Test Case Click the Run button to run the currently displayed test case. Run a Test Suite Click the
Run All button to run all the test cases in the currently loaded test suite.

Stop and Start The Pause button can be used to stop the test case while it is running. The icon of this
button then changes to indicate the Resume button. To continue click Resume.

Stop in the Middle You can set a breakpoint in the test case to cause it to stop on a particular command.
This is useful for debugging your test case. To set a breakpoint, select a command, right-click, and from the
context menu select Toggle Breakpoint.

Start from the Middle You can tell the IDE to begin running from a specific command in the middle of
the test case. This also is used for debugging. To set a startpoint, select a command, right-click, and from
the context menu select Set/Clear Start Point.

Run Any Single Command Double-click any single command to run it by itself. This is useful when
writing a single command. It lets you immediately test a command you are constructing, when you are not
sure if it is correct. You can double-click it to see if it runs correctly. This is also available from the context
menu.

Test Suite:

A test suite is a collection of tests. Often one will run all the tests in a test suite as one continuous batch-
job. When using Selenium-IDE, test suites also can be defined using a simple HTML file. The syntax again

is simple. An HTML table defines a list of tests where each row deﬁne‘s‘}:‘l&:‘eafﬁhﬁp}‘;\ﬁéﬂ*@ﬁp&‘th 3t6}12c5‘test.
Fu ') U J\d\

on - um
INSTALLING THE IDE . panka))(U

64

Using Firefox, first, download the IDE from the SeleniumHQ downloads page Firefox will protect

you from installing addons from unfamiliar locations, so you will need to click ,,Allow* to proceed with the

installation, as shown in the following screenshot.

@ Downloads - Mozilla Firefox

= | =

File Edit View History Bookmarks Tools Help

-~ & A% & hittpisseleniumhq.org/download/

% - | [*B~ Google 2|

| & Downloads [+

g Firefox prevented this site (seleniumhg.org) from asking you to install software on your computer.

Download Documentation

Downloads

Selenium Downloads
Previous Releases

Mightly Releases

——— |5

Support About

Below is where you can find the latest releases of all the Selenium projects. You
can also find a list previous releases, nightly releases, source codse, and
additional information for Maven users (Maven is a popular Java build tool).

| Changelog
| Release Motes

Download (zip) | Changelog

|-
[guo«w[:g x

n

Selenium 2 April 22, 2010 2.0 alpha 5 Download

Plugins for Selenium IDE

Source Code Project Release Date Version
= Selenium Core June 10, 2009 1.0.1
Maven Repository
Info Selenium IDE MNowv 5, 2010 1.0.8 i
Selenium RC February 23, 2010 1.0.3 Download
Selenium Grid April 8, 2010 1.0.6
CubicTest MNowv 10, 2008 1.8.11 Download | Changelog
Bromine Julhy 25, 2010 3.0RC 2 Download

Stopped

Select Install Now. The Firefox Add-ons window pops up, first showing a progress bar, and when the

download is complete, displays the following.

w Add-ons

L &k 4 oml®

Get Add-ons Extensions Themes Plugins Installation

(ol e

0 Restart Firefox to complete your changes.

Selenium IDE 108
Restart to complete the update.

Technology
'\30‘ [eCnitvivy
ndiaNR \nstitu -
gor Teoin0 W o IS eCICO

- pankaj Kume pert
o (principa!)

Restart Firefox. After Firefox reboots you will find the Selenium-IDE listed under the Firefox Tools

menu.

When downloading from Firefox, you“ll be presented with the following window.

[@ selenium IDE 10.8 R

File Edit Options Help

it I8 iz
:ia_l-it Slow S = = | I:'D @
Table m

Command Target Value

Command | -._-_:

Target - I [Find J

Walue

Log | Reference | Ul-Element | Rollup | Infor Clear

y \ndia NJR I

Fol Te

e of Tl

?

M \-Jl.l v ‘g\j

.7\c\\

0:» oanka) kumer PE™

rincipal)

65

