

Software Engineering is theory for
practical, it explains the way of
developing software in step-by-
step process with analysis, design
and estimation. This lab manual is
a simple way of complexity
implementation through various
practices.

Software
Engineering
Lab Manual
A Practical approach of SE
implementation

Dr Paras Kothari

Theory Session

Practical Session

Note: L: Lecture; T: Tutorial; Cr: Credits; ETE: End Term Exam; IA: Internal
Assessment

Syllabus

Objectives:

 To understand the software development methodologies for software
development.

 To gain the knowledge about open-source tools for computer aided
software engineering i.e., CASE

 To develop an efficient software using case tools

List of Experiments

1. Develop requirements specification for a given problem.

2. Develop DFD model (level-0, level-1 and Data dictionary) of the project.

 3. Develop Structured design for the DFD model developed.

4. Develop UML Use case model for a problem.

5.Develop sequence diagram.

6. Develop Class diagrams

7. Use testing tool such as Junit.

 9. Using one project management tool -Libra

Lab Experiment No.1

Develop requirements specification for a given problem

Objective:

To find the requirement specification (both functional and nonfunctional) of
a given Problem.
Procedure:
Step 1:
Introduction:

Purpose

 Identify the product whose software requirements are specified in this
document. Describe the scope of the product that is covered by this SRS,
particularly if this SRS describes only part of the system or a single subsystem.
Describe the different types of user that the document is intended for, such
as developers, project managers, marketing staff, users, testers, and
documentation writers. Describe what the rest of this SRS contains and how
it is organized. Suggest a sequence for reading the document, beginning with
the overview sections and proceeding through the sections that are most
pertinent to each reader type.

Project Scope

 Provide a short description of the software being specified and its
purpose, including relevant benefits, objectives, and goals. Relate the
software to corporate goals or business strategies. If a separate vision and
scope document is available, refer to it rather than duplicating its contents
here. An SRS that specifies the next release of an evolving product should
contain its own scope statement as a subset of the long-term strategic
product vision.
Step 2:

Overall Description

Product Perspective

 Describe the context and origin of the product being specified in this
SRS. For example, state whether this product is a follow-on member of a
product family, a replacement for certain existing systems, or a new, self-
contained product. If the SRS defines a component of a larger system, relate
the requirements of the larger system to the functionality of this software
and identify interfaces between the two. A simple diagram that shows the
major components of the overall system, subsystem interconnections, and
external interfaces can be helpful.

Product Features

 Summarize the major features the product contains or the significant
functions that it performs or lets the user perform. Only a high level summary
is needed here. Organize the functions to make them understandable to any
reader of the SRS. A picture of the major groups of related requirements and
how they relate, such as a top level data flow diagram or a class diagram, is
often effective.

User Classes and Characteristics

 Identify the various user classes that you anticipate will use this
product. User classes may be differentiated based on frequency of use,
subset of product functions used, technical expertise, security or privilege
levels, educational level, or experience. Describe the pertinent
characteristics of each user class. Certain requirements may pertain only to
certain user classes. Distinguish the favored user classes from those who are
less important to satisfy.

Operating Environment

 Describe the environment in which the software will operate,
including the hardware platform, operating system and versions, and any
other software components or applications with which it must peacefully
coexist.

Design and Implementation Constraints

 Describe any items or issues that will limit the options available to the
developers. These might include: corporate or regulatory policies; hardware
limitations (timing requirements, memory requirements); interfaces to other
applications; specific technologies, tools, and databases to be used; parallel
operations; language requirements; communications protocols; security
considerations; design conventions or programming standards (for example,
if the customer’s organization will be responsible for maintaining the
delivered software).

Step 3:

System Features
 This template illustrates organizing the functional requirements for
the product by system features, the major services provided by the product.
You may prefer to organize this section by use case, mode of operation, user
class, object class, functional hierarchy, or combinations of these, whatever
makes the most logical sense for your product.

System Feature 1

Don’t really say “System Feature 1.” State the feature name in just a few
words.

1 Description and Priority

Provide a short description of the feature and indicate whether
it is of High, Medium, or Low priority. You could also include
specific priority component ratings, such as benefit, penalty,
cost, and risk (each rated on a relative scale from a low of 1 to a
high of 9).

2 Stimulus/Response Sequences
 List the sequences of user actions and system responses that
stimulate the behavior defined for this feature. These will correspond
to the dialog elements associated with use cases.
3 Functional Requirements
 Itemize the detailed functional requirements associated with
this feature. These are the software capabilities that must be present
in order for the user to carry out the services provided by the feature,
or to execute the use case. Include how the product should respond to
anticipated error conditions or invalid inputs. Requirements should be
concise, complete, unambiguous, verifiable, and necessary.

<Each requirement should be uniquely identified with a sequence
number or a meaningful tag of some kind.>

REQ-1:
REQ-2:

Step 4:

External Interface Requirements

User Interfaces

 Describe the logical characteristics of each interface between the
software product and the users. This may include sample screen images, any
GUI standards or product family style guides that are to be followed, screen
layout constraints, standard buttons and functions (e.g., help) that will
appear on every screen, keyboard shortcuts, error message display
standards, and so on. Define the software components for which a user
interface is needed. Details of the user interface design should be
documented in a separate user interface specification.

Hardware Interfaces

 Describe the logical and physical characteristics of each interface
between the software product and the hardware components of the system.
This may include the supported device types, the nature of the data and
control interactions between the software and the hardware, and
communication protocols to be used.

Software Interfaces

 Describe the connections between this product and other specific
software components (name and version), including databases, operating
systems, tools, libraries, and integrated commercial components. Identify
the data items or messages coming into the system and going out and
describe the purpose of each. Describe the services needed and the nature
of communications. Refer to documents that describe detailed application
programming interface protocols. Identify data that will be shared across
software components. If the data sharing mechanism must be implemented
in a specific way (for example, use of a global data area in a multitasking
operating system), specify this as an implementation constraint.

Communications Interfaces

 Describe the requirements associated with any communications
functions required by this product, including e-mail, web browser, network
server communications protocols, electronic forms, and so on. Define any
pertinent message formatting. Identify any communication standards that
will be used, such as FTP or HTTP. Specify any communication security or
encryption issues, data transfer rates, and synchronization mechanisms.

Nonfunctional Requirements

Performance Requirements

 If there are performance requirements for the product under various
circumstances, state them here and explain their rationale, to help the
developers understand the intent and make suitable design choices. Specify
the timing relationships for real time systems. Make such requirements as
specific as possible. You may need to state performance requirements for
individual functional requirements or features.

Safety Requirements

 Specify those requirements that are concerned with possible loss,
damage, or harm that could result from the use of the product. Define any
safeguards or actions that must be taken, as well as actions that must be
prevented. Refer to any external policies or regulations that state safety
issues that affect the product’s design or use. Define any safety certifications
that must be satisfied.

Security Requirements

 Specify any requirements regarding security or privacy issues
surrounding use of the product or protection of the data used or created by
the product. Define any user identity authentication requirements. Refer to
any external policies or regulations containing security issues that affect the
product. Define any security or privacy certifications that must be satisfied.

Software Quality Attributes

 Specify any additional quality characteristics for the product that will
be important to either the customers or the developers. Some to consider
are: adaptability, availability, correctness, flexibility, interoperability,
maintainability, portability, reliability, reusability, robustness, testability,
and usability. Write these to be specific, quantitative, and verifiable when
possible. At the least, clarify the relative preferences for various attributes,
such as ease of use over ease of learning.

Other Requirements
 Define any other requirements not covered elsewhere in the SRS. This
might include database requirements, internationalization requirements,
legal requirements, reuse objectives for the project, and so on. Add any new
sections that are pertinent to the project.

Questions

1. Document the SRS of College automation system.
2. Document the SRS of Banking Management System.
3. Why we need SRS in any Project.
4. Which part of SRS is more important?
5. What is the difference between functional and nonfunctional

requirement.

Experiment No. 2

AIM OF THE EXPERIMENT:

Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.

OVERALL DESCRIPTION:

Data analysis attempts to answer four specific questions:

 What processes make up a system?

 What data are used in each process?

 What data are stored?

 What data enter and leave the system?

Data drive business activities and can trigger events (e.g. new sales order
data) or be processed to provide information about the activity. Data flow
analysis, as the name suggests, follows the flow of data through business
processes and determines how organisation objectives are accomplished. In
the course of handling transactions and completing tasks, data are input,
processed, stored, retrieved, used, changed and output. Data flow analysis
studies the use of data in each activity and documents the findings in data
flow diagrams, graphically showing the relation between processes and data.

Physical and Logical DFDs

There are two types of data flow diagrams, namely physical data flow
diagrams and logical data flow diagrams and it is important to distinguish
clearly between the two:

Physical Data Flow Diagrams
 An implementation-dependent view of the current system, showing
what tasks are carried out and how they are performed. Physical
characteristics can include:

Names of people

Form and document names or numbers

Master and transaction files

Equipment and devices used

Logical Data Flow Diagrams

An implementation-independent view of the a system, focusing on the flow
of data between processes without regard for the specific devices, storage
locations or people in the system. The physical characteristics listed above
for physical data flow diagrams will not be specified.

 Fig. A typical DFD

Data Flow Diagram (DFD)

 The DFD (also known as a bubble chart) is a hierarchical graphical
model of a system that shows the different processing activities or functions
that the system performs and the data interchange among these functions.
Each function is considered as a processing station (or process) that
consumes some input data and produces some output data. The system is
represented in terms of the input data to the system, various processing
carried out on these data, and the output data generated by the system. A

ORDERS

CUSTOMERS

INVOICES

DFD model uses a very limited number of primitive symbols [as shown in
figure represent the functions performed by a system and the data flow
among these functions.

Symbols used for designing DFDs

Here, two examples of data flow that describe input and validation of data
are considered. In Figure, the two processes are directly connected by a data
flow. This means that the ‘validate-number’ process can start only after the
‘read-number’ process had supplied data to it. However, in Figure, the two
processes are connected through a data store. Hence, the operations of the
two bubbles are independent. The first one is termed ‘synchronous’ and the
second one ‘asynchronous.

Importance of DFDs in a good software design

The main reason why the DFD
technique is so popular is probably
because of the fact that DFD is a very
simple formalism – it is simple to
understand and use. Starting with a
set of high-level functions that a
system performs, a DFD model
hierarchically represents various
sub-functions. In fact, any
hierarchical model is simple to
understand. Human mind is such that
it can easily understand any
hierarchical model of a system –
because in a hierarchical model,
starting with a very simple and

abstract model of a system, different details of the system are slowly
introduced through different hierarchies. The data flow diagramming
technique also follows a very simple set of intuitive concepts and rules. DFD
is an elegant modeling technique that turns out to be useful not only to
represent the results of structured analysis of a software problem, but also
for several other applications such as showing the flow of documents or
items in an organization.

Data dictionary

A data dictionary lists all data items appearing in the DFD model of a system.
The data items listed include all data flows and the contents of all data stores
appearing on the DFDs in the DFD model of a system. A data dictionary lists
the purpose of all data items and the definition of all composite data items
in terms of their component data items. For example, a data dictionary entry
may represent that the data grossPay consists of the components regularPay
and overtimePay.

Balancing a DFD

The data that flow into or out of a bubble must match the data flow at the
next level of DFD. This is known as balancing a DFD. The concept of balancing
a DFD has been illustrated in fig. 5.3. In the level 1 of the DFD, data items d1
and d3 flow out of the bubble 0.1 and the data item d2 flows into the bubble
0.1. In the next level, bubble 0.1 is decomposed. The decomposition is
balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in.

Questions
1 what are the symbols used in a DFD.

2. What is an external entity?

3. What is a context free diagram?

4. What is Data-dictionary?

5. Why balancing of DFD is required.

Lab Experiment No.4

Develop Structured design for the DFD model developed.

A DFD model of a system graphically depicts the transformation of the data
input to the system to the final result through a hierarchy of levels. A DFD
starts with the most abstract definition of the system (lowest level) and at
each higher level
DFD, more details are successively introduced. To develop a higher-level DFD
model, processes are decomposed input data to these functions and the data
output by these functions and represent them appropriately in the diagram.

If a system has more than 7 high- level functional requirements, then some
of the related requirements have to be combined and represented in the
form of a bubble in the level 1 DFD. Such a bubble can be split in the lower
DFD levels. If a system has less than three high-level functional requirements,
then some of them need to be split into their sub-functions so that we have
roughly about 5 to 7 bubbles on the diagram.

Decomposition:-
Each bubble in the DFD represents a function performed by the system. The
bubbles are decomposed into sub-functions at the successive levels of the
DFD.
Decomposition of a bubble is also known as factoring or exploding a bubble.
Each bubble at any level of DFD is usually decomposed to anything between
3 to 7 bubbles. Too few bubbles at any level make that level superfluous. For
example, if a bubble is decomposed to just one bubble or two bubbles, then
this decomposition becomes redundant. Also, too many bubbles, i.e. more
than 7 bubbles at any level of a DFD makes the DFD model hard to
understand. Decomposition of a bubble should be carried on until a level is
reached at which the function of the bubble can be described using a simple
algorithm.

Numbering of Bubbles:-
It is necessary to number the different bubbles occurring in the DFD. These
numbers help in uniquely identifying any bubble in the DFD by its bubble
number. The bubble at the context level is usually assigned the number 0 to
indicate that it is the 0 level DFD. Bubbles at level 1 are numbered, 0.1, 0.2,
0.3, etc, etc. When a bubble numbered x is decomposed, its children bubble
are numbered x.1, x.2, x.3, etc. In this numbering scheme, by looking at the
number of a bubble we can unambiguously determine its level, its ancestors,
and its successors.

Example:-
A supermarket needs to develop the following software to encourage regular
customers. For this, the customer needs to supply his/her residence address,
telephone number, and the driving license number. Each customer who
registers for this scheme is assigned a unique customer number (CN) by the
computer. A customer can present his CN to the check out staff when he
makes any purchase. In this case, the value of his purchase is credited against
his CN. At the end of each year, the supermarket intends to award surprise
gifts to 10 customers who make the highest total purchase over the year.
Also, it intends to award a 22 caret gold coin to every customer whose
purchase exceeded Rs.10,000. The entries against the CN are the reset on
the day of every year after the prize winners’ lists are generated.

Page 15 of 63

Questions
1. Draw the DFD of College Automation System.
2.How we balance a DFD.
3.Draw the DFD of Banking Management System.
4. How we choose the level of DFD.
5. What is the need of DFD in a project

Page 16 of 63

Experiment No.4

Develop UML Use case model for a problem

Objective :

To understand the users view of a project using Use case Diagram

Software Required :-

Visual Paradigm for UML 8.2

Procedure :-

You can draw use case diagrams in VP-UML as well as to document the event flows
of use cases using the flow-of-events editor of UML 8.2 .The steps are as follows.

Step 1:

Right click Use Case Diagram on Diagram Navigator and select New Use Case
Diagram from the pop-up menu.

Step 2:-

Page 17 of 63

 Enter name for the newly created use case diagram in the text field of pop-up box
on the top left corner.

Step 3:

Drawing a system
To create a system, select System on the diagram toolbar and then click it on the
diagram pane. Finally, name the newly created system when it is created.

Step 4:

Drawing an actor
To draw an actor, select Actor on the diagram toolbar and then click it on the
diagram pane. Finally, name the newly created actor when it is created.

Page 18 of 63

Step 5 :-

Drawing a use case
Besides creating a use case through diagram toolbar, you can also create it through
resource icon.
Move the mouse over a shape and press a resource icon that can create use case.
Drag it and then release the mouse button until it reaches to your preferred place.
The source shape and the newly created use case are connected. Finally, name the
newly created use case.

Step 6:-

Create a use case through resource
icon
Line wrapping use case name
If a use case is too wide, for a better outlook, you may resize it by dragging the filled
selectors. As a result, the name of use case will be line-wrapped automatically.

Page 19 of 63

Step 7:

Resize a use
case

To create an extend relationship, move the mouse over a use case and press its
resource iconExtend -> Use Case. Drag it to your preferred place and then release
the mouse button. The use case with extension points and a newly created use case
are connected. After you name the newly created use case, a pop-up dialog box will
ask whether you want the extension point to follow the name of use case.
Click Yes if you want it to do so; click NO if you want to enter another name for
extension point.

Step 8:

Create an extend
relationship
Drawing <<Include>> relationship
To create an include relationship, mouse over a use case and press its resource
icon Include -> Use Case. Drag it to your preferred place and then release the
mouse button. A new use case together with an include relationship is created.
Finally, name the newly created use case.

Step 9:

Page 20 of 63

Include relationship is
created
Structuring use cases with package
You can organize use cases with package when there are many of them on the
diagram.
Select Package on the diagram toolbar (under Common category).

Step 10:

Create a
package
Drag the mouse to create a package surrounding those use cases.

Step 11:

Surround use cases with
package
Finally, name the package.

Page 21 of 63

Step 12

Name the
package

Assigning IDs to actors/Use cases
You may assign IDs to actors and use cases. By default, IDs are assigned with the
order of object creation, starting from one onwards. However, you can define the
format or even enter an ID manually.

Defining the format of ID
To define the format of ID, select Tools > Options from the main menu to unfold
the Options dialog box. Select Diagramming from the list on the left hand side and
select the Use Case Diagram tab on the right hand side. You can adjust the format
of IDs under Use Case Diagram tab. The format of ID consists of prefix, number of
digits and suffix.

Page 22 of 63

Step 13:

Use Case Diagram tab

The description of options for ID generator format is shown below.
Option

Description

Prefix The prefix you enter in Prefix text field will be inserted before the

number.

Num of

digits

The number of digits for the number. For example, when digit is 3,

ID "1" will become "001".

Suffix The suffix you enter in Suffix text field will be inserted behind the

number.

Options for formatting ID

Page 23 of 63

Showing ID on diagram
By default, ID is just a text property. It usually doesn't appear on diagram. However,
you can make it shown within a use case.
Right click on the diagram background, select Presentation Options and the
specific model element display option from the pop-up menu.

Step 14 :

Show ID on diagram

As a result, the use case is displayed with ID.

A use case with ID
displayed

NOTE:
The feature of showing ID does only support for use case,
but not for actor.

ID assignment
There are several ways that you can assign an ID to a model element, including:

 Through the specification dialog box (Right click on the selected model element and
select Open Specification... from the pop-up menu)

 Through the Property Pane
Drawing business use case

Page 24 of 63

1. Right click on a use case and select Model Element Properties > Business
Model from the pop-up menu.

Step 15:

1.
Click Business
Model

2. After selected, an extra slash will be shown on the left edge of the use case.

Business model

And Finally The Use case Diagram is ready.

Questions

1.What is the importance of UML.

2.What are the UML foundations.

3. What is Use case.

4.Who are the actors in a UML.

5.What is boundary in a USE CASE.

Page 25 of 63

Lab Experiment No.5

Develop sequence diagram

Objective :

To understand the interactions between objects that are represented as lifelines in
a sequential order of a project using Sequence Diagram.

Software Required :-

Visual Paradigm for UML 8.2

Procedure :-

A sequence diagram is used primarily to show the interactions between objects
that are represented as lifelines in a sequential order.

Step 1:-

Right click Sequence diagram on Diagram Navigator and select New Sequence
Diagram from the pop-up menu to create a sequence diagram.

Step 2:-

Enter name for the newly created sequence diagram in the text field of pop-up box
on the top left corner.

Page 26 of 63

Creating actor
To create actor, click Actor on the diagram toolbar and then click on the diagram.

Creating lifeline
To create lifeline, you can click LifeLine on the diagram toolbar and then click on
the diagram.
Alternatively, a much quicker and more efficient way is to use the resource-centric
interface. Click on the Message -> LifeLine resource beside an actor/lifeline and
drag.

Step 3:-

Move the mouse to empty space of the diagram and then release the mouse
button. A new lifeline will be created and connected to the actor/lifeline with a
message.

Auto extending activation
When create message between lifelines/actors, activation will be automatically
extended.

Page 27 of 63

Step 4:-

Using sweeper and magnet to manage sequence diagram
Sweeper helps you to move shapes aside to make room for new shapes or
connectors. To use sweeper, click Sweeper on the diagram toolbar (under
the Tools category).

Page 28 of 63

The picture below shows the message specify visit time is being swept downwards,
thus new room is made for new messages.

Step 5:-

You can also use magnet to pull shapes together. To use magnet, click Magnet on
the diagram toolbar (under the Tools category).

Page 29 of 63

Magnet

Click on empty space of the diagram and drag towards top, right, bottom or left.
Shapes affected will be pulled to the direction you dragged.
The picture below shows when drag the magnet upwards, shapes below dragged
position are pulled upwards.

Page 30 of 63

Step 6:-

Creating combined fragment for messages
To create combined fragment to cover messages, select the messages, right-click
on the selection and select Create Combined Fragment, and then select a
combined fragment type (e.g. loop) from the popup menu.

Step 7:-

A combined fragment of selected type will be created to cover the messages.

Page 31 of 63

Step 8:-

Adding/removing covered lifelines
After you've created a combined fragment on the messages, you can add or remove
the covered lifelines.

1. Move the mouse over the combined fragment and select Add/Remove Covered
Lifeline... from the pop-up menu.

2. In the Add/Remove Covered Lifelines dialog box, check the lifeline(s) you want to
cover or uncheck the lifeline(s) you don't want to cover. Click OK button.

Page 32 of 63

3. As a result, the area of covered lifelines is extended or narrowed down according
to your selection.

Managing Operands
After you've created a combined fragment on the messages, you can also add or
remove operand(s).

1. Move the mouse over the combined fragment and select Operand > Manage
Operands... from the pop-up menu.

Page 33 of 63

Step 9:-

1. To remove an operand, select the target operand from Operands and
click Remove button. ClickOK button.

2. Otherwise, click Add button to add a new operand and then name it.
Click OK button.

Developing sequence diagram with quick editor or keyboard shortcuts
In sequence diagram, an editor appears at the bottom of diagram by default, which
enables you to construct sequence diagram with the buttons there. The shortcut
keys assigned to the buttons provide a way to construct diagram through keyboard.
Besides constructing diagram, you can also access diagram elements listing in the
editor.

Page 34 of 63

There are two panes, Lifelines and Messages. The Lifelines pane enables you to
create different kinds of actors and lifelines.

Bu
tt
on

Shortcut Description

Page 35 of 63

 Alt-Shift-A To create an actor
 Alt-Shift-L To create a general lifeline
 Alt-Shift-E To create an <<entity>> lifeline
 Alt-Shift-C To create a <<control>> lifeline
 Alt-Shift-B To create a <<boundary>> lifeline
 Alt-Shift-O To open the specification of the element chosen in quick editor
 Ctrl-Del To delete the element chosen in quick editor
 Ctrl-L To link with the diagram, which cause the diagram element to be

selected when selecting an element in editor, and vice versa

Step 10:-

Buttons in Lifelines
pane

Editing messages
The Messages pane enables you to connect lifelines with various kinds of
messages.

Messages pane in quick editor

Page 36 of 63

Button

Shortcut Description

 Alt-Shift-M To create a message that connects actors/lifelines in diagram

 Alt-Shift-D To create a duration message that connects actors/lifelines in
diagram

 Alt-Shift-C To create a create message that connects actors/lifelines in
diagram

 Alt-Shift-S To create a self message on an actor/lifeline in diagram

 Alt-Shift-R To create a recursive message on an actor/lifeline in diagram

 Alt-Shift-F To create a found message that connects to an actor/lifeline

 Alt-Shift-L To create a lost message from an actor/lifeline

 Alt-Shift-E To create a reentrant message that connects actors/lifelines in
diagram

 Ctrl-Shift-Up To swap the chosen message with the one above

 Ctrl-Shift-
Down

To swap the chosen message with the one below

 Ctrl-R To revert the direction of chosen message

 Alt-Shift-O To open the specification of the message chosen in quick editor

 Ctrl-Del To delete the message chosen in quick editor

 Ctrl-L To link with the diagram, which cause the message to be
selected when selecting a message in editor, and vice versa

Buttons in Messages pane

Page 37 of 63

Expanding and collapsing the editor
To hide the editor, click on the down arrow button that appears at the bar on top
of the quick editor. To expand, click on the up arrow button.

Collapse the quick
editor

Setting different ways of numbering sequence messages
You are able to set the way of numbering sequence messages either on diagram
base or frame base.

Diagram-based sequence message
Right click on the diagram's background, select Sequence Number and then
either Single Levelor Nested Level from the pop-up menu.

Step 11:-

If you choose Single Level, all sequence messages will be ordered with integers on
diagram base. On the other hand, if you choose Nested Level, all sequence
messages will be ordered with decimal place on diagram base.

Page 38 of 63

Right click on the diagram's background, select Sequence Number and then
either Frame-based Single Level or Frame-based Nested Level from the pop-up
menu.

When you set the way of numbering sequence messages on frame base, the
sequence messages in frame will restart numbering sequence message since they

Page 39 of 63

are independent and ignore the way of numbering sequence message outside the
frame.

QUESTIONS

1. Draw the Sequence diagram of College Automation System.

2. What is the need of sequence diagram in a project?

3. What is the difference between nested level and single level sequence?

4. Draw the Sequence diagram of Banking Management system.

Page 40 of 63

Experiment No. 6:

Develop Class diagram

Objective:-

To show diagrammatically the objects required and the relationships between
them while developing a software product.

Software Required :-

Visual Paradigm for UML 8.2

Procedure :-

Step 1:-

Right click Class Diagram on Diagram Navigator and select New Class
Diagram from the pop-up menu to create a class diagram.

Step 2:-

Creating class
To create class, click Class on the diagram toolbar and then click on the diagram.

Page 41 of 63

A class will be created.

Creating association
To create association from class, click the Association -> Class resource beside it
and drag.

Drag to empty space of the diagram to create a new class, or drag to an existing
class to connect to it. Release the mouse button to create the association.

To create aggregation, use the Aggregation -> Class resource instead.

Step 3:-

To edit multiplicity of an association end, right-click near the association end,
select Multiplicityfrom the popup menu and then select a multiplicity.

Page 42 of 63

To show the direction of an association, right click on it and select Presentation
Options > Show Direction from the pop-up menu.

Page 43 of 63

Step 4:-

The direction arrow is shown beside the association.

Creating generalization
To create generalization from class, click the Generalization -> Class resource
beside it and drag.

Drag to empty space of the diagram to create a new class, or drag to an existing
class to connect to it. Release the mouse button to create the generalization.

Creating attribute
To create attribute, right click the class and select Add > Attribute from the pop-up
menu.

An attribute is created.

Page 44 of 63

Creating attribute with enter key
After creating an attribute, press the Enter key, another attribute will be created.
This method lets you create multiple attributes quickly and easily.

Creating operation
To create operation, right click the class and select Add > Operation from the pop-
up menu.

An operation is created.

Similar to creating attribute, you can press the Enter key to create multiple
operations continuously.

Page 45 of 63

Drag-and-Drop reordering, copying and moving of class members
To reorder a class member, select it and drag within the compartment, you will see
a thick black line appears indicating where the class member will be placed.

Release the mouse button, the class member will be reordered.

To copy a class member, select it and drag to the target class while keep pressing
the Ctrl key, you will see a thick black line appears indicating where the class
member will be placed. A plus sign is shown beside the mouse cursor indicating this
is a copy action.

Release the mouse button, the class member will be copied.

To move a class member, select it and drag to the target class, you will see a thick
black line appears indicating where the class member will be placed. Unlike copy,
do not press the Ctrl key when drag, the mouse cursor without the plus sign
indicates this is a move action.

Page 46 of 63

Release the mouse button, the class member will be moved.

Model name completion for class
The model name completion feature enables quick creation of multiple views for
the same class model. When create or rename class, the list of classes is shown.

Type text to filter classes in the list.

Page 47 of 63

Press up or down key to select class in the list, press Enter to confirm. Upon
selecting an existing class, all class members and relationships are shown
immediately.

Step 5:-

Continue to complete the diagram.

Page 48 of 63

Generalization set
A generalization set defines a particular set of generalization relationships that
describe the way
in which a general classifier (or superclass) may be divided using specific subtypes.
To define a generalization set, select the generalizations to include, right click and
select Generalization set > Create Generalization Set... from the popup menu.

Step 6:-

Name the set in the Manage Generalization Sets dialog box, and confirm by
pressing OK.

Page 49 of 63

The selected generalizations are grouped. Adjust the connector to make the
diagram tidy.

Repeat the steps for other generalizations.

Questions :

1.Define Class.

2.What is the difference between Class diagram and UML.

3. What is dependency.

4.What is composition.

5. Define Recursive Association.

Page 50 of 63

Lab Experiment No.7

Use testing tool such as Junit.

Testing is the process of checking the functionality of the application whether it is
working as per requirements and to ensure that at developer level, unit testing
comes into picture. Unit testing is the testing of single entity (class or method). Unit
testing is very essential to every software company to give a quality product to their
customers.
Unit testing can be done in two ways

Manual testing Automated testing

Executing the test cases manually without any
tool support is known as manual testing.

 Time consuming and tedious: Since test
cases are executed by human resources
so it is very slow and tedious.

 Huge investment in human resources: As
test cases need to be executed manually
so more testers are required in manual
testing.

 Less reliable: Manual testing is less
reliable as tests may not be performed
with precision each time because of
human errors.

 Non-programmable: No programming
can be done to write sophisticated tests
which fetch hidden information.

Taking tool support and executing the test
cases by using automation tool is known as
automation testing.

 Fast Automation runs test cases
significantly faster than human
resources.

 Less investment in human resources:
Test cases are executed by using
automation tool so less tester are
required in automation testing.

 More reliable: Automation tests
perform precisely same operation
each time they are run.

 Programmable: Testers can program
sophisticated tests to bring out
hidden information.

What is JUnit ?

JUnit is a unit testing framework for the Java Programming Language. It is
important in the test driven development, and is one of a family of unit testing
frameworks collectively known as xUnit.

Page 51 of 63

JUnit promotes the idea of "first testing then coding", which emphasis on setting
up the test data for a piece of code which can be tested first and then can be
implemented . This approach is like "test a little, code a little, test a little, code a
little..." which increases programmer productivity and stability of program code
that reduces programmer stress and the time spent on debugging.

Features

 JUnit is an open source framework which is used for writing & running tests.

 Provides Annotation to identify the test methods.

 Provides Assertions for testing expected results.

 Provides Test runners for running tests.

 JUnit tests allow you to write code faster which increasing quality

 JUnit is elegantly simple. It is less complex & takes less time.

 JUnit tests can be run automatically and they check their own results and
provide immediate feedback. There's no need to manually comb through a
report of test results.

 JUnit tests can be organized into test suites containing test cases and even
other test suites.

 Junit shows test progress in a bar that is green if test is going fine and it turns
red when a test fails

What is a Unit Test Case ?

A Unit Test Case is a part of code which ensures that the another part of code
(method) works as expected. To achieve those desired results quickly, test
framework is required .JUnit is perfect unit test framework for java programming
language.

Page 52 of 63

A formal written unit test case is characterized by a known input and by an
expected output, which is worked out before the test is executed. The known input
should test a precondition and the expected output should test a postcondition.

There must be at least two unit test cases for each requirement: one positive test
and one negative test. If a requirement has sub-requirements, each sub-
requirement must have at least two test cases as positive and negative.

 Online
You really do not need to set up your own environment to start learning
Java &JUnit programming language. Reason is very simple, we already
have setup Java Programming environment online, so that you can
compile and execute all the available examples online at the same time
when you are doing your theory work. This gives you confidence in what
you are reading and to check the result with different options. Feel free
to modify any example and execute it online.

Try following example using Try it option available at the top right corner
of the below sample code box:

public class MyFirstJavaProgram {

public static void main(String []args) {
System.out.println("Hello World");
 }
}

For most of the examples given in this tutorial, you will find Try it option,
so just make use of it and enjoy your learning.

Local Environment Setup

JUnit is a framework for Java, so the very first requirement is to have JDK installed
in your machine.

Page 53 of 63

System Requirement

JDK 1.5 or above.

Memory no minimum requirement.

Disk Space no minimum requirement.

Operating System no minimum requirement.

Step 1 - verify Java installation in your machine

Now open console and execute the following java command.

OS Task Command

Windows Open Command Console c:\> java –version

Linux Open Command Terminal $ java –version

Mac Open Terminal machine:~ joseph$ java -version

Let's verify the output for all the operating systems:

OS Output

Windows java version "1.6.0_21"
Java(TM) SE Runtime Environment (build 1.6.0_21-b07)
Java HotSpot(TM) Client VM (build 17.0-b17, mixed mode, sharing)

Linux java version "1.6.0_21"
Java(TM) SE Runtime Environment (build 1.6.0_21-b07)
Java HotSpot(TM) Client VM (build 17.0-b17, mixed mode, sharing)

Mac java version "1.6.0_21"
Java(TM) SE Runtime Environment (build 1.6.0_21-b07)
Java HotSpot(TM)64-Bit Server VM (build 17.0-b17, mixed mode,
sharing)

Page 54 of 63

Step 2: Set JAVA environment

Set the JAVA_HOME environment variable to point to the base directory location
where Java is installed on your machine. For example

Windows Set the environment variable JAVA_HOME to C:\Program
Files\Java\jdk1.6.0_21

Linux export JAVA_HOME=/usr/local/java-current

Mac export JAVA_HOME=/Library/Java/Home

Append Java compiler location to System Path.

OS Output

Windows Append the string ;C:\Program Files\Java\jdk1.6.0_21\bin to the end of
the system variable, Path.

Linux export PATH=$PATH:$JAVA_HOME/bin/

Mac not required

Verify Java Installation using java -version command explained above.

Step 3: Download Junit archive

Download latest version of JUnit jar file from http://www.junit.org. At the time of
writing this tutorial, I downloaded Junit-4.10.jar and copied it into C:\>JUnit folder.

OS Archive name

Windows junit4.10.jar

Linux junit4.10.jar

Mac junit4.10.jar

Step 4: Set JUnit environment

Page 55 of 63

Set the JUNIT_HOME environment variable to point to the base directory location
where JUNIT jar is stored on your machine. Assuming, we've stored junit4.10.jar in
JUNIT folder on various Operating Systems as follows.

OS Output

Windows Set the environment variable JUNIT_HOME to
C:\JUNIT

Linux export JUNIT_HOME=/usr/local/JUNIT

Mac export JUNIT_HOME=/Library/JUNIT

Step 5: Set CLASSPATH variable

Set the CLASSPATH environment variable to point to the JUNIT jar location.
Assuming, we've stored junit4.10.jar in JUNIT folder on various Operating Systems
as follows.

OS Output

Windows
Set the environment variable CLASSPATH
to %CLASSPATH%;%JUNIT_HOME%\junit4.10.jar;.;

Linux export CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit4.10.jar:.

Mac export CLASSPATH=$CLASSPATH:$JUNIT_HOME/junit4.10.jar:.

Step 6: Test JUnit Setup

Create a java class file name Test unit in C:\ > JUNIT_WORKSPACE

importorg.junit.Test;
import static org.junit.Assert.assertEquals;
public class TestJunit {
 @Test
public void testAdd() {

Page 56 of 63

 String str= "Junit is working fine";
assertEquals("Junit is working fine",str);
 }
}

Create a java class file name TestRunner in C:\ > JUNIT_WORKSPACE to execute
Test case(s)

importorg.junit.runner.JUnitCore;
importorg.junit.runner.Result;
importorg.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
 Result result = JUnitCore.runClasses(TestJunit.class);
for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
 }
System.out.println(result.wasSuccessful());
 }
}

Step 7: Verify the Result

Compile the classes using javac compiler as follows

C:\JUNIT_WORKSPACE>javac TestJunit.java TestRunner.java

Now run the Test Runner to see the result

C:\JUNIT_WORKSPACE>java Test Runner

Verify the output.

Page 57 of 63

Experiment No-8

Using configuration management tool-libra

Installation and Use

The Libra features can be installed from the p2 repository of the Indigo
Simultaenous Release (since Indigo M6). As a prerequisite you may install Eclipse
IDE for Java EE Developers.

The update site contains:

 OSGi Bundle Facet feature that introduces:
1. A new facet OSGi Bundle for Dynamic Web, JPA and Utility projects.
2. Wizard for converting WTP standard projects to OSGi Enterprise

bundle projects:
 Dynamic Web projects to Web Application Bundle projects
 JPA projects to Persistent Bundle projects
 Utility projects and simple Java projects to OSGi Bundle projects

Both options modify project's MANIFEST.MF in order to become a valid
OSGi bundle.

The facet may be enabled during the project creation or after that from the
Properties page of the project. The wizard is available from project's context menu
Configure > Convert to OSGi Bundle Projects...

Note that you may need to adjust your target platform accordingly.

 WAR Products feature which provides WAR deployment for Equinox based
applications

Page 58 of 63

Create new Web Application Bundle

1. Call the New Dymanic Web Project wizard: New > Project... > Web > Dynamic
Web Project

2. Enter the necessary project information like Project name, Target runtime,
etc.

3. Add the OSGi Bundle facet in the Configuration:
1. Click on the Modify... button in the Configuration group.
2. Choose the OSGi Bundle facet in the Project Facets dialog and click OK.

4. Click Finish to create the Web Application Bundle project.

Create new OSGi Bundle

1. Call the New Faceted Project wizard: New > Project... > General > Faceted
Project

2. Enter the necessary project information like Project name.
3. Click the Next button.
4. Select the OSGi Bundle and Java facets.

Page 59 of 63

5. Click Finish to create the OSGi Bundle project.

Obtaining Sources

You can find the sources available in Git repository

In order to synchronize them locally, you may use the EGit step-by-step procedure.

The EGit/User Guide provides detailed instruction how to work with EGit.

Updating/Installing EGit

 Start your Eclipse IDE and navigate to Help->Install New Software->Add...
 Enter the software update site [1]
 Select the Eclipse EGit (Incubation) and Eclipse JGit (Incubation) and choose

Next> to finish the installation.

During the installation you will be asked to accept the License Agreements.

Page 60 of 63

Identifying Yourself

To identify yourself, follow these instructions these instructions

Setting up the Home Directory on Windows

To set up the HOME directory, go through these steps

Configuring SSH in Eclipse

To configure ssh, proceed as follows.

Clone Git Repository

 Open the Git Repository Exploring perspective and in the Git Repositories
view choose the Clone a Git Repository toolbar button

 In the URI field of the opened Clone Git Repository wizard enter the URI of
the libra git repository: [2] and choose Next

Page 61 of 63

 Select the added repository and from its context menu choose Import
Projects...

 Expand the repository tree to Remote Tracking level, select the remote
branch origin/master and from its context menu choose Create Branch... to
create a new local branch

Updating Sources

To keep the sources up to date you have to pull the new changes from the upstream
branch.

Build Infrastructure

The build is based on Maven (at least 3.0.0) and Tycho, executed on the Hudson
server, hosted at Eclipse Foundation.

There are two Hudson jobs available for Libra:

 libra - for building the master git branch.
 libra-indigo - for building the indigo git branch.

Maven Build Sequence

Complete build sequence for a clean build (assuming $M2_HOME/bin is on the path
and local Maven repository at ~/.m2/repository):

[~/org.eclipse.libra/development/org.eclipse.libra.releng] $ mvn clean install

Note that you may need to configure your proxy settings

Proposing and Committing a Patch

The patch file contains a description of changes of a set of resources which can be
automatically applied to another eclipse workspace or git repository. If you want
to propose or commit a patch you need to know that the Eclipse update hook will
examine the Committer's entries of an incoming push. All the committer's entries
have to be made by the committer performing the push, otherwise the push will
fail. Furthermore, your committer ID, or the committer e-mail address registered

Page 62 of 63

with your committer account at the Eclipse Foundation must be present in the
Committer Email record. For more information on that restriction see: this page.

Proposing a Patch

If you want commit a change on a local feature or bugfix branch and then to export
this change into a patch file, follow the steps below:

1. Open a bug
 Specify the bug component (General; OSGi Facet or WAR)
 Complete the fields about the product version, bug severity, type of

your hardware, operating systems and write a summary and
description of the patch

2. Open the History view of your Eclipse IDE and choose Create Patch... (The
patch file will contain the difference between the commit and its parent in
the history view. Note that the filter of the history view applies also for patch
creation.)

3. Start the Patch Wizard, select the location of the patch and choose Next (The
name of the patch file is created from the first line of the commit message.)

4. Change the patch format, if necessary.
5. Attach the patch created to the bug
6. Submit the bug

Committing a Patch

To commit a patch, proceed as follows:

1. Apply the proposed patch using the Patch Wizard
2. Test the patch
3. Commit the patch
4. Setup push configuration with the following push URL:

ssh://committer_id@git.eclipse.org/gitroot/libra/org.eclipse.libra.git

5. Push the patch and see its change number in order to be able to inspect it

Page 63 of 63

Reproducing a Build to a Certain Change List

Fetch to the specific change and build with Maven as described above.

----- Good Luck -------

