Techno India NJR Institute of Technology
Academic Administration of Techno NJR Institute
Syllabus Deployment
Session 2019-20

Name of Faculty: Mr. Pankaj Chittora Subject Code: 5CS4-02
Subject Name: Compiler Design

Department: Department of Computer Science Engineering SEM: V
Total No. of Lectures Planned: 40

Textbook references:

TEXTBOOK:

1. Compilers, Principle, Techniques, and Tools. — Alfred.V Aho, Monica S.Lam, Ravi Sethi,

Jeffrey

D. Ullman.

2. Modern Compiler implementation in C , - Andrew N.Appel Cambridge University Press.

REFERENCE BOOKS:

lex & yacce , -John R Levine, Tony Mason, Doug Brown; O’reilly.
Compiler Construction,- LOUDEN, Thomson.
Engineering a compiler — Cooper & Linda, Elsevier

4. Modern Compiler Design ~ Dick Grune, Henry E.Bal, Cariel TH Jacobs, Wiley Dreatech

Additional Resources (NPTEL):

1. https://nptel.ac.in/courses/106/105/106105190/

Course Outcomes

Students will be able to learn major concepts in areas of language

C035402.1 translation and compiler design.
Students will be able to ability to identify, formulate, and soive computer |
€0O35402.2 engineering problems with proper systematic & semantic approach.
Stﬁdehts will be able to Develop possiblé progvralr”l‘c’énstrvdcts fof funhef |
C035402.3 code generation with Type checking.
Students will be able to learn various concepts of symbol tables, Run
C0O35402.4 time environments, memory management strategy.
* Students will get the concepts of Intermediate code generation, Code
€0O35402.5 optimization and Code generations. 4 f Technolod
— ;,\“S“\U\e ot ";__,
T \ndia NIR
For it © e o
on _ o
" panka) Kuma! P¢

P rincipal)

]

Lecture

No. Unit Topic

1 1 Introduction of Compiler, Translator, Interpreter

2 1 Phase of compiler

3 1 Introduction to one pass & Mulitipass compilers, Bootstrapping

4 1 Review of Finite automata

5 i Lexical analyzer, [nput, buffering,

6 1 Recognition of tokens

7 1 A lexical analyzer generator, Error handling

8 2 Review of Context Free Grammar, Ambiguity of grarnmars

9 2 Introduction to parsing: Bottom up parsing

10 2 Top down parsing techniques Q |

11 2 Shift reduce parsing, Operator precedence parsing

12 2 Recursive descent parsing predictive parsers

13 2 LL grammars & passers error handling of LL parser

14 2 LR parsers

15 2 Construction of SLR

16 2 Conical LR & LALR parsing tables

17 2 Parsing with ambiguous grammar

13 5 Introduction of automatic parser generator: YACC error handling in LR
parsers

19 3 Counstruction of syntax trees

20 3 L-attributed definitions, Top down translation

21 3 Specification of a type checker (.

22 3 Intermediate code forms using postfix notation

23 3 Three address code, Representing TAC using triples and quadruples

24 3 Translation of assignment statement

25 3 Boolean expression and control structures

26 4 Storage organization, Storage allocation, Strategies

27 4 Activation records, Accessing local and non-local names in a block structured
language -1

73 4 Activation records, Accessing local and non-local names in a block structured
language -2

29 4 Parameters passing, Symbol tabie organization - ndiaN R \ns\'\tgti;\t OA &Y

‘ 5 ST S

r

Ton\

. ™
pankaj Kuma(¢

(principa)

30 4 Data structures used in symbol tables

31 5 Definition of basic block control flow graphs

32 5 DAG representation of basic block

33 5 Advantages of DAG, Sources of optimization, Loop optimization
34 5 Idea about global data flow analysis, Loop invariant computation
35 5 Peephole optimization

36 5 Issues in design of code generator

37 5 A simple code generator, Code generation from DAG

38 Revision of Important topics

39 Problem solving

40 Problem Solving

For Te

{ of Techin0ivy
y \ndia NR nsiitute of 1€

s M EGL

o
. Panka) Kum
'\?r\ncxpa\)

)

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus
Il Year-V Semester: B.Tech. Computer Science and Engineering

5C84-02: Compiler Design

Credit: 3 Max., Marks: 150{1A:30, ETE:120)
3L+0T+0OP End Term Exam: 3 Hours
SN Contents Hours

1 | Introduction:Objective, scope and outcome of the course. 01

2 | Introduction: Objective, scope and outcome of the course.
Compiler, Translator, Interpreter definition, Phase of compiler,
Bootstrapping, Review of Finite automata lexical analyzer, Input, 06
Recognition of tokens, Idea about LEX: A lexical analyzer
generator, Error handling.

3 | Review of CFG Ambiguity of grammars: Introduction to parsing. Q
Top down parsing, LL grammars & passers error handling of LL
parser, Recursive descent parsing predictive parsers, Bottom up
parsing, Shift reduce parsing, LR parsers, Construction of SLR, 10
Conical LR & LALR parsing tables, parsing with ambiguous
grammar. Operator precedence parsing, Introduction of automatic
parser generater: YACC error handling in LR parsers.

4 | Syntax directed definitions; Construction of syntax trees, S-
Attributed Definition, L-attributed definitions, Top down
translation. Intermediate code forms using postfix notation, DAG,
Three address code, TAC for various control structures,
Representing TAC wusing triples and quadruples, Boolean
expression and control structures.

5 | Storage organization; Storage allocation, Strategies, Activation
records, Accessing local and non-local names in a block structured
language, Parameters passing, Symbol table corganization, Data
structures used in symbol tables.

& | Definition of basic block controi flow graphs; DAG
representation of basic block, Advantages of DAG, Sources of
optimization, Loop optimization, Idea about giobal data flow
analysis, Loop invariant computation, Peephole optimization,
Issues in design of code generator, A simple code generator, Code
generation from DAG.

10

08 (

Q7

Total 42

{ Technol 0y
oo \ndia NR institute of
OIF% o Dean Acadsosiogiai®h) 2 e

A by
Rajasthan Technical Universiynya) Kuma’ por
— -\p(\nC\paW
ed in Sessior: 2017-18 onwards. Page 3

yHabus of 3"Year B. Tech. (CS) for students admitt

Department of Computer Science & Engineering Course File : Compiler Design

UNIT-I

INTRODUCTION TO LANGUAGE PROCESSING:

As Computers became inevitable and indigenous part of human life, and several languages
with different and more advanced features are evolved into this stream to satisfy or comfort the user
in communicating with the machine , the development of the translators or mediator Software’s
have become essential to fill the huge gap between the human and machine understanding. This
process is called Language Processing to reflect the goal and intent of the process. On the way to
this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines.
LANGUAGE TRANSLATORS :

Is a computer program which translates a program written in one (Source) language to its
equivalent program in other [Target]language. The Source program is a hi ghlevel language where as
the Target language can be any thing from the machine language of a target machine (between
Microprocessor to Supercomputer) to another high level language program.

2. Two commonly Used Translators are Compiler and Interpreter
1. Compiler: Compilerisaprogram, reads program inone language called Source Language

and translates in to its equivalent program in another Language called Target Language, in
addition to this its presents the error information to the User.

' An Equivalent Program in
COMPILER 1., other Language oy

. Relocatable Object Code
or Target Program

Source program in
one language or
high level
Language

k3

Error Information

% Ifthe target program is an executable machine-language program, it can then be called by
the users to process inputs and produce outputs.

Input e TargEt Program — Output

Figurel.1: Running the target Program

y \ndia NR institute of Tecl

- Panka) Kur

]

ar Potw

(Princt al)

Department of Computer Science & Engineering Course File : Compiler Design

2. Interpreter: Aninterpreter is another commonly used language processor. Instead of producing
a target program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

Source Program ———|
Input ——p i0IEFpreter T Gy

Figure 1.2: Running the target Program

LANGUAGE PROCESSING SYSTEM:

Based on the input the translator takes and the output it produces, a language translator can be
called as any one of the following.

Preprocessor: A preprocessor takes the skeletai source program as input and produces an extended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and
including header files etc in the source file. For example, the C preprocessor is a macro processor
that is used automatically by the C compiler to transfoirm our source before actual compilation. Over
and above a preprocessor performs the following activities:

Y Collects all the modules, files in case if the source program is divided into different modules
stored at different files.

Y Expands short hands / macros into source ianguagestatements.

Compiles: Is a translator that takes as input a source program written in high level language and
converts it into its equivalent target program in machine language. in addition to above the compiler
also

Y. Reports to its user the presence of errors in the source program.
Y Facilitates the user inrectifying the errors, and execute the code.

Assembier: Is a program that takes as input an assembly language program and converts it into its
equivalent machine language code.

Loader / Linker: This is a program that takes as input 2 relocatable code and coliects the library
functions, relocatable object files, and produces ifs equivalent absolute machine code.

Specifically,

¥ Loading consists of taking the relocatabie machine code, altering the relocatable addresses,
and placing the altered instructions and data in memory at the proper locations.

Y Linking allows us to make a single program from several files of relocatable machine
code. These files may have been result of several different compilations, one or more
may be library routines provided by the system available to any program that needs them.

For ¢

y \ndia NR institute of

. panka) KU

To(J
| T

alen
S Porv

(principe)

o

Department of Computer Science & Engineering Course File : Compiler Design

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an
executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its
equivalent executable code is produced. As I said earlier not all these steps are mandatory. In
some cases, the Compiler only performs this linking and loading functions implicitly.

The steps mvolved in a typical language processing system can be understood with following
diagram.

Source Program [Example: filename.C]

Preprocessor

Modified S%urce Program [Example: filename.C]

Compiler

Target Assembly Program

Assembler

Relocatable Machine Code [Example: filename.obj]

l

Loader/Linker | <«——Library files
Relocatable Object files

Target \\%achine Code [Example: filename. exe]

Figurel.3 : Context of a Compiler in Language Processing System

TYPES OF COMPILERS:

Based on the specific input it takes and the output it produces, the Compilers can be classified
into the following types;

Traditional Compilers(C, C++, Pascal): These Compilers convert a source program in a HLL
into its equivalent in native machine code or object code.

s ingia N

For-i

(SRS vt .
m CEY

_nankaj KU

(Principe

R Insfitule of ‘/‘
Ay o
ar POV

)

00Y

Department of Computer Science & Engineering Course File : Compiler Design

Interpreters(LISP, SNOBOL, Javal.G): These Compilers first convert Source code into
intermediate code, and then interprets (emulates) it to its equivalent machine code.

Cross-Compilers: These are the compilers that run on one machine and produce code for
another machine.

Incremental Compilers: These compilers separate the source into user defined-steps;
Compiling/recompiling step- by- step; interpreting steps in a given order

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level
language to another.

Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers from
intermediate language (byte code, MSIL) to executable code or native machine code. These
perform type —based verification which makes the executable code more trustworthy

Ahead-of-Time (AQT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native
code for Java and .NET

Binary Compilation: These compilers will be compiling object code of one piatform into object code
of another platform.

PHASES OF A COMPILER:

Due to the compiexity of compilation task, a Compiler typically proceeds in a Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
Generally an interface contains a Data structure (e.g., tree), Set of exported functions. Each
phase works on an abstract intermediate representation of the source program, not the source
program text itself (except the first phase)

Compiler Phases are the individual modules which are chronologically executed to perform their
respective Sub-activities, and finally integrate the solutions to give target code.

1t is desirable to have relatively few phases, since it takes time to read and write immediate files.
Following diagram (Figurel.4) depicts the phases of a compiler through which it goes during the
compilation. There fore a typical Compiler is having the following Phases:

I. Lexical Analyzer (Scanner), 2. Syntax Analyzer (Parser), 3.Semantic Analyzer,
4.Intermediate Code Generator(ICG), 5.Code Optimizer(CO) , and 6.Code
Generator(CG)

In addition to these, it also has Symbel table management, and Error handler phases. Not ail
the phases are mandatory in every Compiler. e.g, Code Optimizer phase is optional in some

P fincip

Hule 0\“‘;&,\.‘-“- s
. NJR Instity —
eqrTecro gl o & G
s 7
o 3

Department of Computer Science & Engineering Course File : Compiler Design

cases. The description is given in next section.

The Phases of compiler divided in to two parts, first three phases we are called as
Analysis part remaining three called as Synthesis part.

A

4 Lexicnl analysey

i)

i
i

AN

By

 Figurel4 : Phases of a Compiler
PHASE, PASSES OF A COMPILER:

In some application we can have a compiler that is organized into what is called passes.
Where a pass is a collection of phases that convert the input from one representation to a
completely deferent representation. Each pass makes a complete scan of the input and produces

its output to be processed by the subsequent pass. For example a two pass Assembler.

THE FRONT-END & BACK-END OF A COMPILER

.~ \ndiaN
ol lE ’“

; § e

JR Anstitute 017
e Tz
Gl o kumat PerY

o P adka-‘

\ 100\
chn0iog

(PTinC

ipal)

Department of Computer Science & Engineering Course File : Compiler Design

All of these phases of a general Compiler are conceptually divided into The Front-end,
and The Back-end. This division is due to their dependence on either the Source Language or
the Target machine. This model is called an Analysis & Synthesis modei of a compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source
language and are largely independent on the target machine. For example, front-end of the
compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and
those portions don’t dependent on the Source language, just the intermediate language. In this we
have different aspects of Code Optimization phase, code generation along with the necessary

Error handling, and Symbol table operations.

LEXICAL ANALYZER (SCANNER): The Scanner is the first phase that works as interface
between the compiler and the Source language program and performs the following functions:

Y Reads the characters in the Source program and groups them into a stream of tokens in
which each token specifies a logicaily cohesive sequence of characters, such as an
identifier , a Keyword , a punctuation mark, a multi character operator like := .

Y The character sequence forming a token is called a iexeme of the token.

Y The Scanner generates a token-id, and also enters that identifiers name in the Symbol
table if it doesn’t exist.

Also removes the Comments, and unnecessary spaces.

[

The format of the token is < Token name, Attribute value>

SYNTAX ANALYZER (PARSER}: The Parser interacts with the Scanner, and its subsequent
phase Semantic Analyzer and performs the following functions:

Y Groups the above recsived, and recorded token stream into syntactic structures, usually
into a structure called Parse Tree whose leaves are tokens.

1

The interior node of this tree represents the stream of tokens that logicaily belongs
together.

Y It means it checks the syntax of program elements.

SEMANTIC ANALYZER: This phase receives the syntax tree as input, and checks the
semantically correctness of the program. Though the tokens are valid and syntactically correct, it

y \ndia NR institute of '3»:‘.
N o‘m&%\@ﬂe\

- _nanka) KU
(principa)

e

(o

ar POTW

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY UDAIPUR

Computer Science and Engineering
B. TECH III- YEAR (V Sem)
SUBJECT 5CS402
COMPILER DESIGN

ASSIGNMENT 1
Answer all questions. Each question carries 5 marks

1. Explain lexical analyzer generator and error handling. [CO-1]

2. What are the phases of a compiler? [CO-1]

3. Describe recursive descent parsing and predictive parsers. [CO-2]
4. What do you mean by ambiguous grammar ? [CO-2]

5. Construct any syntax tree. [CO-3]

6. Cite an example of top down translation. [CO-3]

o ndia IR \nstitute of ;" g
For It s e

]

for Tex™™ 1ndia NR \nsitute of Technology
© —_—
e 2l

[
ot panka)
(Pt'mc'\pa\)

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY UDAIPUR

Computer Science and Engineering
B. TECH III- YEAR (V Sem)
SUBJECT 5CS8402
COMPILER DESIGN

ASSIGNMENT 2

Answer all questions. Each question carries 5 marks

1. Comment on Boolean expression and control structures. [CO-3]

2. Explain storage organization, allocation and strategies. [CO-4]

3. Explain parameters passing and symbol table organization. [CO-4]

4. How can you access local and non-local names in a block structured language-1 ? [CO-4]
5. Explain advantages of DAG. [CO-5]

6. Describe (i) loop variant computation (ii) peephole optimization [CO-5]

. ndia NOR nsitute of 18 hiolog
For & s e

for Tex™™ 1ndia NR \nsitute of Technology
© —_—
e 2l

[
ot panka)
(Pt'mc'\pa\)

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY UDAIPUR

Sl A S

— et e \O
W N -

14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31

Computer Science and Engineering
B. TECH III- YEAR (V Sem)
SUBJECT 5CS402
COMPILER DESIGN

VIVA-VOCE SET OF QUESTIONS

Define regular expression. Give example. Write its applications.
What are the limitations of recursive descent parser?

Write the rules to compute operator precedence.

Why are quadruples preferred over triples in an optimizing compiler?
Write the usage of reference counting garbage collector

How redundant sub expression elimination can be done at global level in a given program?

Describe how various phases could be combined as a pass in a compiler?

Explain the transition diagram for recognition of tokens and reserved words.

Discuss briefly about the classification of parsing techniques.

- Eliminate left recursion in the following grammar A — ABd | Aa|aB — Be | b

. Show that Bottom up parsing is right most derivation in reverse order.

- What are the common conflicts that can be encountered in shift reduce parsers? Explain.
. Write the translation scheme to generate intermediate code for assignment statements with array

references.
What is type system? Discuss static and dynamic checking of types.

Explain various ways to access non local variables.

Justify the statement “Copy propagation Leads to Dead code”

Discuss in brief about left Recursion and Left Factoring with examples.
Define Ambiguous grammar? Explain it with an Example.

What is Dangling ELSE ambiguity? How to reduce it.

Explain in brief about Stack Storage allocation strategy.

examples.
Define Boot strapping.
. What are the draw backs of predictive parsing?

Define Regular Expression? Write about the identity rules for regular expressions.
Construct a Predictive parsing table for the Grammar E—E+T/T, T»>T*F/F, F—(E)/id .

Construct CLR Parsing table for the grammar S—L=R/R, L—*R/id, R—L.

For &

What is an activation record? Explain how it is related with run time storage organization?

Discuss the role of semantic preserving transformations and dominators in code optimization.

Translate the expression ((a+b)*(c+d)+(a+b+c) in to quadruple, triple and indirect triple.
Differentiate between Synthesized and Inherited attributes with suitable examples.
Define Symbol table? Explain about the data structures used for Symbol table.

What are loop invariant Computations? Explain how they affect the efficiency of a program.
Explain in brief about different Principal sources of optimization techniques with suitable

. ndia NOR \nstitute of | et
s M EGL

)

For |

. \ndia NOR nstitute of Technology
—_—

s 2al

[
o P ankaj
&Pm\c\pa\)

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY UDAIPUR

Computer Science and Engineering
B. TECH III- YEAR (V Sem)
SUBJECT 5CS402
COMPILER DESIGN

QUIZ

Attempt all questions. Each question carries 1 mark. No negative marking,. Time — 15 mins

I. The action of parsing the source program into proper syntactic classes is called
(a) General syntax analysis

(b) Interpretation analysis

(c) Syntax analysis

(d) Lexical analysis

2. The bottom-up parsing method is also called
(a) Shift reduce parsing

(b) Predictive parsing

(¢) Recursive descent parsing

(d) None of these

3. Synthesized attribute can be easily simulated by a
(a) LR grammar

(b) LL grammar

(¢) Ambiguous grammar

(d) None of these

4. The most general phase structured grammar
(a) Context sensitive

(b) Context free

(c) Regular

(d) None of these

5. Which of the following is known as a compiler for a high-level language that runs on one machine and
produces code for a different machine?

a) Cross compiler

b) Multipass compiler

¢) Optimizing compiler

d) One pass compiler

6. Which of the following is correct regarding an optimizer Compiler?
a) Optimize the code

b) Is optimized to occupy less space

¢) Both of the mentioned

d) None of the mentioned

ndia NOR \nsfitute 0\‘['3»; 0
For T n s Y
o
. Panka) Kum
| (?r‘mt:\pa\)

For |

 \ndia NR \nsitute of Technology
—_—

s Al

[
ot P anka)
(Pt'\t\c'\pa\)

7. Characters are grouped into tokens in which of the following phase of the compiler design?

a) Code generator

b) Lexical analyzer
c) Parser

d) Code optimization

8. Consider the following two sets of LR(1) items of an LR(1) grammar.

X ->c¢.X, c/d
X->.cX,¢/d
X->.d,¢/d
X>cX, $
X->cX, $
X->.d,8$

Which of the following statements related to merging of the two sets in the corresponding LALR parser

is/are FALSE?

1. Cannot be merged since look aheads are different.

2. Can be merged but will result in S-R conflict.

3. Can be merged but will result in R-R conflict.

4. Cannot be merged since goto on ¢ will lead to two different sets.

a. 1 only

b. 2 only

c. I and 4 only

d. 1,2,3,and 4
9.

The grammar S — aSa | bS | ¢ is

a) LL(1) but not LR(1)

b) LR(1)but not LR(1)

¢) Both LL(1)and LR(1)

d) Neither LL(1)nor LR(1)

. ndia NOR \nsitute of fechn®/c%

Q_ (6§ J\O\\

st
. pankaj KU
‘ QPY'\nC\Pa“

)|

For |

 \ndia NR \nsitute of Technology
—_—

s Al

[
ot P anka)
(Pt'\t\c'\pa\)

10. What is the similarity between LR, LALR and SLR?

a) Use same algorithm, but different parsing table

b) Same parsing table, but different algorithm

¢) Their Parsing tables and algorithm are similar but uses top down approach
d) Both Parsing tables and algorithm are different

R Institute of u;‘ 00y

o ndia N
For e \n ; e
o umarPow'

- pankaj KU
'’ \Pﬂnc\pa\)

s
EN

for Tex™™ 1ndia NR \nsitute of Technology
© —_—
Vo 2l
- Panka) Kumar Per
(Pt'mc'\pa\)

