

Techno India NJR Institute of Technology

Course File

Computer Graphics & Multimedia (5CS4- 04)

Ayush Gupta

Assistant Professor

Department of CSE

Prerequisites:
1. Basic mathematics including round off, floor and ceiling functions.
2. Basics of linear algebra.
3. Intermediate programming skills.
4. Understanding of basic geometric shapes.

UNIT-I

Introduction: Objective, Scope and Outcome of the Course

5CS404 Computer Graphics & Multimedia Year of study: 2019-20

CO35404.1
Students will be able to define the basics of computer graphics, different graphics
systems, application of computer graphics and rasterisation of line, circle and ellipse.

CO35404.2

Students will be able to apply geometric transformations on graphics objects, their
application in composite form, different color filling algorithm and clipping
algorithm.

CO35404.3 Students will be able to identify visible surface detection techniques & curves.

CO35404.4
Students will be able to render projected objects to naturalize the scene in 2D view
and use of illumination models & color models.

CO35404.5 Students will be able to identify multimedia components and animation techniques.

Mapping of Cos with Pos and PSOs:

Computer Graphics & Multimedia Year of study: 2019-20
Course
Outcome

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO35404.1 2 3 3 1 2 0 0 0 1 0 0 1 2 1 1

CO35404.2 2 3 3 3 2 0 0 0 0 0 1 2 2 1 1

CO35404.3 2 3 3 3 3 0 0 0 0 0 1 2 2 1 1

CO35404.4 3 3 3 3 3 1 1 0 0 0 1 2 2 1 1

CO35404.5 2 1 1 2 2 1 1 0 0 0 1 1 2 1 1
C35404
(AVG)

2.20 2.60 2.60 2.40 2.40 0.40 0.40 0.00 0.20 0.00 0.80 1.60 2.00 1.00 1.00

UNIT- II

Ivan Sutherland is a pioneer of Computer Graphics.

What is Computer Graphics?

Computer graphics is the branch of computer science that deals with generating images with
the aid of computers. Today, computer graphics is a core technology in digital photography, film,
video games, cell phone and computer displays, and many specialized applications. A great deal
of specialized hardware and software has been developed, with the displays of most devices
being driven by computer graphics hardware. It is a vast and recently developed area of
computer science.

Computer graphics is responsible for displaying art and image data effectively and meaningfully
to the consumer. It is also used for processing image data received from the physical world, such
as photo and video content. Computer graphics development has had a significant impact on
many types of media and has revolutionized animation, movies, advertising, video games, and
graphic design in general.

Applications of Computer Graphics

Some of the applications of computer graphics are as follows:

1. Computer Art and Computer Aided Design
2. Presentation Graphics
3. Entertainment

4. Education
5. Training

Display Devices:

The most commonly used display device is a video monitor. The operation of most video
monitors based on CRT (Cathode Ray Tube). Following are the most common display devices:

1. Refresh Cathode Ray Tube
2. Random Scan and Raster Scan
3. Color CRT Monitors
4. Direct View Storage Tubes
5. Flat Panel Display
6. Lookup Table

Cathode Ray Tube (CRT):

CRT stands for Cathode Ray Tube. CRT is a technology used in traditional computer monitors
and televisions. The image on CRT display is created by firing electrons from the back of the
tube of phosphorus located towards the front of the screen.

Once the electron heats the phosphorus, they light up, and they are projected on a screen. The
color you view on the screen is produced by a blend of red, blue and green light.

Components of CRT:

Main Components of CRT are:

1. Electron Gun: Electron gun consisting of a series of elements, primarily a heating filament
(heater) and a cathode. The electron gun creates a source of electrons which are focused into a
narrow beam directed at the face of the CRT.

2. Control Electrode: It is used to turn the electron beam on and off.

3. Focusing system: It is used to create a clear picture by focusing the electrons into a narrow
beam.

4. Deflection Yoke: It is used to control the direction of the electron beam. It creates an electric
or magnetic field which will bend the electron beam as it passes through the area. In a
conventional CRT, the yoke is linked to a sweep or scan generator. The deflection yoke which is
connected to the sweep generator creates a fluctuating electric or magnetic potential.

5. Phosphorus-coated screen: The inside front surface of every CRT is coated with phosphors.
Phosphors glow when a high-energy electron beam hits them. Phosphorescence is the term used
to characterize the light given off by a phosphor after it has been exposed to an electron beam.

Problem: Light emitted by phosphors fades very rapidly so picture is not maintained for long.

Solution: repeatedly striking the beam to the phosphors on same points this makes picture
visible for long time. This type of display is called as "refresh CRT".

Color CRT:

1. Beam- penetration Method:

The beam-penetration method for displaying color pictures has been used with random-
scan monitors. Two layers of phosphor, usually red and green, are coated onto the inside of the
CRT screen, and the displayed color depends on how far the electron beam penetrates into the
phosphor layers.

A beam of slow electrons excites only the outer red layer.

A beam of very fast electrons penetrates through the red layer and excites the inner green layer.

At intermediate beam speeds, combinations of red and green light are emitted to show two
additional colors’, orange and yellow.

2. Shadow Mask Method:

Shadow-mask methods are commonly used in raster scan systems (including color TV) because
they produce a much wider range of colors’ than the beam penetration method. A shadow-mask
CRT has three phosphor color dots at each pixel position. One phosphor dot emits a red light,
another emits a green light, and the third emits a blue light. This type of CRT has three electron
guns, one for each color dot, and a shadow-mask grid just behind the phosphor-coated screen.

Scanning Methods (Random & Raster):

Random Scan Method:
 In black and white system we need only 1 bit per pixel where 1 represents white and 0
represents black.

- If the system has to display more colors’ more bits are required. A high quality can have up to
24 bits per pixel

Frame Buffer --> Black & White --> Bitmap

Frame Buffer --> color system --> Pixmap

-
Refresh rate of raster scan is 60-80 frames per second.

- Horizontal retrace required 17% time of the required for one scan line.

- Vertical retrace retrace required 21% time of the required for one scan line.

- In non interlaced method refresh rate is 30 frames per second. (Flicker is noticeable)

- In interlaced method refresh rate is 60 frames per second.

Assignment-1: Quiz

1. THE INSIDE OF THE CATHODE RAY TUBE IS COATED WITH WHAT MATERIAL?
A) Fluorescent powder
B) No coating
C) Phosphorus
D) None of the above

ANSWER: C
2. Beam penetration method is usually used in

A) LCD
B) Raster Scan display
C) Random scan display
D) DVST

ANSWER: C
3. Shadow mask method is usually used in

A) LCD

B) Raster Scan Display
C) Random Scan Display
D) DVST

ANSWER: B
4. Identify the colors produced in beam penetration method.

A) Red, Green, Blue, White
B) Red, Orange, Yellow, Green
C) Red, Green, Blue
D) Green, Red, White, Orange

ANSWER: B
5. In raster scan display, the frame buffer holds

A) Line drawing commands
B) Scanning instructions
C) Image Resolution
D) Intensity information

ANSWER: D
6. In random scan display, the frame buffer holds

A) Line drawing commands
B) Scanning instructions
C) Image Resolution
D) Intensity information

ANSWER: A
7. THE QUANTITY OF AN IMAGE DEPEND ON

A) No of Pixel used by image
B) No of lines used by image
C) No of resolution used by image
D) None

ANSWER: A
8. WHICH AMONG THE FOLLOWING IS NOT MERIT (ADVANTAGE) OF THE
CATHODE RAY TUBE?

A) It runs at highest pixel ratio
B) It is less expensive than any other display technology
C) It is very large, heavy and bulgy
D) None of the above

ANSWER: C
9. WHICH AMONG THE FOLLOWING IS A PART OF THE CATHODE RAY TUBE?

A) Control Electrode
B) Electron Gun
C) Focusing System
D) All

ANSWER: D
10. Electron gun section ________

A) Provides sharp beam

B) Provides poorly focussed beam
C) Doesn’t provide any beam
D) Provides electrons only

ANSWER: A
11. Control grid is given ________

A) Positive voltage
B) Negative voltage
C) Neutral voltage
D) Zero voltage

ANSWER: B
12. What determines light intensity in a CRT?

A) Voltage
B) Current
C) Momentum of electrons
D) Fluorescent screen

ANSWER: C
13. Effect of negative voltage to the grid is ________

A) No force
B) A gravitational force
C) An attractive force
D) A repulsive force

ANSWER: D
14. How many guns are available for color monitor in shadow mask method?

A) 1
B) 2
C) 3
D) 4

ANSWER: C
15. How many colors can be generated using beam penetration method?

A) 3
B) 4
C) 254
D) 24

ANSWER: B

UNIT- III
Graphics Primitives:

Scan Conversion:

It is a process of representing graphics objects a collection of pixels. The graphics objects are
continuous. The pixels used are discrete. Each pixel can have either on or off state.
0 is represented by pixel off. 1 is represented using pixel on.

Using this ability graphics computer represent picture having discrete dots.

Objects that can be scanned conversion:

1. Point
2. Line
3. Sector
4. Arc
5. Ellipse
6. Rectangle
7. Polygon
8. Characters
9. Filled Regions

The process of converting is also called as rasterization. The algorithms implementation varies
from one computer system to another computer system. Some algorithms are implemented using
the software. Some are performed using hardware or firmware. Some are performed using
various combinations of hardware, firmware, and software.

Pixel or Pel:
The term pixel is a short form of the picture element. It is also called a point or dot. It is the
smallest picture unit accepted by display devices. A picture is constructed from hundreds of such
pixels. Pixels are generated using commands. Lines, circle, arcs, characters; curves are drawn
with closely spaced pixels. To display the digit or letter matrix of pixels is used.

Different graphics objects can be generated by setting the different intensity of pixels and
different colors of pixels. Each pixel has some co-ordinate value. The coordinate is represented
using row and column.

P (5, 5) used to represent a pixel in the 5th row and the 5th column. Each pixel has some

intensity value which is represented in memory of computer called a frame buffer. Frame
Buffer is also called a refresh buffer.

Scan Converting a Point:
Each pixel on the graphics display does not represent a mathematical point. Instead, it means a
region which theoretically can contain an infinite number of points. Scan-Converting a point
involves illuminating the pixel that contains the point.

Example: Display coordinates points as shown in fig would both be
represented by pixel (2, 1). In general, a point p (x, y) is represented by the integer part of x &
the integer part of y that is pixels [INT (x), INT (y)].

Line Drawing (scanning):
A straight line may be defined by two endpoints & an equation. In fig the two endpoints are
described by (x1,y1) and (x2,y2). The equation of the line is used to determine the x, y coordinates
of all the points that lie between these two endpoints.

intensity value which is represented in memory of computer called a frame buffer. Frame
Buffer is also called a refresh buffer.

Scan Converting a Point:
Each pixel on the graphics display does not represent a mathematical point. Instead, it means a
region which theoretically can contain an infinite number of points. Scan-Converting a point
involves illuminating the pixel that contains the point.

Example: Display coordinates points as shown in fig would both be
represented by pixel (2, 1). In general, a point p (x, y) is represented by the integer part of x &
the integer part of y that is pixels [INT (x), INT (y)].

Line Drawing (scanning):
A straight line may be defined by two endpoints & an equation. In fig the two endpoints are
described by (x1,y1) and (x2,y2). The equation of the line is used to determine the x, y coordinates
of all the points that lie between these two endpoints.

intensity value which is represented in memory of computer called a frame buffer. Frame
Buffer is also called a refresh buffer.

Scan Converting a Point:
Each pixel on the graphics display does not represent a mathematical point. Instead, it means a
region which theoretically can contain an infinite number of points. Scan-Converting a point
involves illuminating the pixel that contains the point.

Example: Display coordinates points as shown in fig would both be
represented by pixel (2, 1). In general, a point p (x, y) is represented by the integer part of x &
the integer part of y that is pixels [INT (x), INT (y)].

Line Drawing (scanning):
A straight line may be defined by two endpoints & an equation. In fig the two endpoints are
described by (x1,y1) and (x2,y2). The equation of the line is used to determine the x, y coordinates
of all the points that lie between these two endpoints.

Using the equation of a straight line, y = mx + b where m = & b = the y interrupt, we can find
values of y by incrementing x from x =x1, to x = x2. By scan-converting these calculated x, y
values, we represent the line as a sequence of pixels.
Note: A good line drawing algorithm should produce a straight line always.

Algorithm for line drawing:

1. DDA Line Drawing Algorithm
2. Bresenham Line Drawing Algorithm

Digital Differential Analyzer (DDA):

Algorithm:

1. Compute the slope of the line ’m’
2. Increase the current value of x by 1, starting from leftmost coordinate
3. Calculate new value of y using: yi=mxi+c
4. Draw pixel at (xi, round(yi))

Case 1:

When m <=1

Using the equation of a straight line, y = mx + b where m = & b = the y interrupt, we can find
values of y by incrementing x from x =x1, to x = x2. By scan-converting these calculated x, y
values, we represent the line as a sequence of pixels.
Note: A good line drawing algorithm should produce a straight line always.

Algorithm for line drawing:

1. DDA Line Drawing Algorithm
2. Bresenham Line Drawing Algorithm

Digital Differential Analyzer (DDA):

Algorithm:

1. Compute the slope of the line ’m’
2. Increase the current value of x by 1, starting from leftmost coordinate
3. Calculate new value of y using: yi=mxi+c
4. Draw pixel at (xi, round(yi))

Case 1:

When m <=1

Using the equation of a straight line, y = mx + b where m = & b = the y interrupt, we can find
values of y by incrementing x from x =x1, to x = x2. By scan-converting these calculated x, y
values, we represent the line as a sequence of pixels.
Note: A good line drawing algorithm should produce a straight line always.

Algorithm for line drawing:

1. DDA Line Drawing Algorithm
2. Bresenham Line Drawing Algorithm

Digital Differential Analyzer (DDA):

Algorithm:

1. Compute the slope of the line ’m’
2. Increase the current value of x by 1, starting from leftmost coordinate
3. Calculate new value of y using: yi=mxi+c
4. Draw pixel at (xi, round(yi))

Case 1:

When m <=1

Calculating value of m:

y=mx+c Eq. 1

For (x1, y1) and (x2, y2) Both will satisfy equation no 1 so

 y1=mx1+c Eq. 2

 y2=mx2+c Eq. 3

Eq. 3 – Eq.2

(y2 –y1)= m(x2 - x1)

m= (y2- y1)/ (x2- x1) or we can say that m=Δy/Δx

Calculating y’ for next step of x+1:

From Eq. 1 yi=mxi-1+c …….Eq. 4

y’ next point will obtain by y’=m(xi-1+1)+c

y’= mxi-1 + m + c by Eq. 4

y’=yi+m ……Eq. 5

Case 2:

When m >1

f the slope is greater than 1 then role of x and y will interchange. We sample y at unit intervals
Δy=1 and compute successive x values.

m=1/(x2-x1) or we can say m=1/ (xi+1-xi)

xi+1=xi+(1/m) …….Eq. 6

Case 1 and Case 2 are based on assumption that lines are to be processed from left end point to
right end point.

Case 3:

If the processing is reversed i.e. if line starts from right to left then

Δx = -1

m=(yi+1 - yi)/ -1

yi+1 = yi – m ……..Eq. 7

Case 4:

Δy=-1

xi+1 = xi – (1/m) ...…..Eq. 8

Disadvantages:

1. Lots of floating point calculations are involved
2. Multiplication and division involved in calculation takes more CPU cycles

Algorithm:

Step-1 Calculate constant dx, dy

Step-2 Calculate no of steps for iteration as:

 nsteps = (dx>dy) ? dx : dy

Step-3 Calculate xinc and yinc as:

 xinc = dx / nsteps & yinc = dy / nsteps

Step-4 Draw all the points by calculating consecutive x and y points as xnext = xprev+xinc, round-
off (ynext=yprev+yinc)repeat this process n steps times.

Bresenham's Line Drawing Algorithm:

This is very efficient and faster algorithm. This algorithm follows the closeness theory to
implement line plotting.

0<m<1 slope is between 0 to 1

Increment x by unit interval and plot the point whose y value is close to the ideal line path.

From figure, it can be seen that first point is plotted at (xp,yp). Next point will be plotted in the x
direction would be xp+1 and for y we have to choose yp or yp+1. This can be decided
mathematically by distance d1 and d2.

Y= mx+c ……Eq. 1

y= m(xp+1) +c ……Eq. 2

d2= (yp+1)-y …….Eq. 3

by Eq. 3 and 2

d2= yp+1=m (xp+1)-c ……Eq. 4

d1= y-yp …….Eq. 5

By Eq. 5 and 3

d1=m (xp+1) + c-yp ……Eq. 6

So d1-d2 will be

=> m (xp+1) + c – yp – yp – 1 +m (xp+1) + c

=> 2m (xp+1) -2yp +2c -1 …….Eq. 7

To make sure that during calculation of decision parameter we will include only integer
calculation we know m=Δy/Δx so putting this in Eq. 7

d= (d1- d2)= 2Δy/Δx (xp+1) -2yp+2c -1 Multiplying both the sides by Δx will get

d= Δx (d1-d2)= 2Δy xp+ 2Δy – 2Δx yp+ Δx (2c-1)

d= 2Δy xp- 2Δx yp+ c’ where c’= 2Δy +Δx (2c-1) ….Eq. 8

After this calculation if d is –ve, means d1<d2 so will choose yp so next point will be (xp+1, yp)
else will choose (xp+1, yp+1)

Set dold=d

Case 1: Select yp

dnew = 2Δy (xp +1) – 2Δx yp+ c’ …….Eq. 9

Δd=dnew-dold Eq. 8 and 9

Δd= 2 Δy

Case 2: select yp+1

dnew = 2Δy (xp +1) – 2Δx (yp+1)+ c’ ……Eq. 10

Δd=dnew-dold Eq. 8 and 10

Δd= 2 Δy – 2Δx

Algorithm:

1. Input start point and end point of the line consider initial point as (x0,y0) and plot them

2. Calculate the constants Δx, Δy, 2 Δy, 2 Δy – 2Δx and obtain the starting value for the
decision parameter as dstart=2 Δy – Δx

3. At each step test the value of decision variable

 a. If d<0 choose yp and increment d by 2 Δy

· dnew = dold+2 Δy

 b. Else choose yp+1 and increment d by 2 Δy – 2Δx

· dnew = dold + 2 Δy – 2Δx

5. Repeat step 3 until last point is reached

Mid Point Circle

A circle is a set of all points that lie at an equal distance from a fixed point called as centre.

Symmetric figure:

4- Way symmetric (Quadrant)

8- Way symmetric (Octant)

Circle Equation:

x2+y2=r2
 { centre (0,0)} ……..Eq. 1

8- Way symmetric (Octant)

Circle Equation:

x2+y2=r2
 { centre (0,0)} ……..Eq. 1

8- Way symmetric (Octant)

Circle Equation:

x2+y2=r2
 { centre (0,0)} ……..Eq. 1

Brute force algorithm

y2=r2-x2

y=√r2-x2 (finding square root in every calculation is expensive)

Mid Point Circle:

x2+y2-r2=0

Putting midpoints say (x’, y’) into the equation will get 3 possible results.

(x’)2 + (y’)2 – r2=0

Case 1:
if result is 0 point lies on the line

Case 2: if result is <0 then point lies inside circle boundary

Case 3: if result is >0 then point les outside the circle boundary

Consider Mid Point coordinates as (xm, ym) -> (xk+1, yk-1/2)

Putting these coordinates in Eq. 1

Pk = (xk+1)2 + (yk-1/2)2
 – r2 …..Eq. 2

Pk+1 = (xk+1+1)2 + (yk+1-1/2)2 – r2 …..Eq. 3

Pk+1- pk = (xk+1+1)2 - (xk+1)2 + (yk-1/2)2 – (yk+1-1/2)2 + r2 – r2

Pk+1- pk = (xk+1+1)2 - (xk+1)2 + (yk-1/2)2 – (yk+1-1/2)2

Pk+1- pk = xk
2 + 4+ 4xk – xk

2 – 1- 2xk + yk+1
2 + ¼ - yk+1 – yk

2 – ¼ + yk

Pk+1 = pk + 2xk + 3 + yk+1
2 – yk

2- yk+1 +yk

if pk <0 yk+1 = yk

pk+1 = pk + 2xk + 3 + yk
2 – yk

2- yk +yk

pk+1 = pk + 2xk + 3

if pk>0 yk+1 = yk -1

pk+1 = pk + 2xk + 5 -2yk

P0 initial decision parameter

xk=0 yk=r

Putting this in Eq. 2

P0 = 5/4 –r

Algorithm:

If r is the radius of the circle to be drawn and origin is its centre, then to plot the first octant of
the circle, do following:

1. Plot the initial point (xi, yi)such that: xi = 0 and yi = r

2. Find initial decision parameter pi = 5/4 –r

3. If pi < 0 then

 xi+1 = xi + 1

 yi+1 = yi

 pi+1 = pi + 2xi + 3

6. If pi > 0 then

 xi+1 = xi + 1

 yi+1 = yi -1

 pi+1 = pi + 2(xi – yi) + 5

7. Repeat step 3, 4 until x becomes greater than or equal to y

To plot the complete circle, reflect each point of the first octant, onto 7 other octants making use
of 8 – way symmetry

Mid Point Ellipse Drawing:

x2/a2 + y2/b2 =1 .……Eq. 1

Simplifying this equation will get

b2x2 + a2y2 = a2b2

rx
2 y2 + x2 ry

2 – rx
2ry

2 = 0 …….Eq. 2

Putting any point in Eq. 2 will get 3 cases:

Case 1: if result is 0 point lies on the ellipse boundary

Case 2: if result is <0 then point lies inside ellipse boundary

Case 3: if result is >0 then point les outside the ellipse boundary

Note:

1. Circle has 8- way symmetry where as ellipse has 4- way symmetry
2. In circle we need to plot one octant but in case of ellipse we need to plot 2 octant i.e. 1

quadrant

Quadrant – 1(Region 1)

- Start point: (0, ry)

- Slope of Curve < -1

- Take unit steps in positive x direction till boundary between 2 regions is reached

Quadrant- 1 (Region 2)

- Slope of curve > -1

- Take unit step in negative y direction till the end of the quadrant.

Note: On the boundary between 2 region or octant the slope of the curve is -1.

Slope of curve:

dy/dx (ry
2x2 + rx

2 y2 – rx
2ry

2) = 0

dy/dx (y2) = dy/dx {(rx
2ry

2 - ry
2x2)/ rx

2}

dy/dx 2y = dy/dx (rx
2ry

2 / rx
2) –dy/dx(ry

2x2 / rx
2)

 dy/dx = - 2ry
2x / 2 rx

2y

- 2ry
2x / 2 rx

2y =-1

- 2ry
2x = -2 rx

2y

Region -1:

(xk + 1, yk) or (xk + 1, yk - 1) so the midpoint will be (xk + 1, yk - 1/2)

ry
2x2 + rx

2 y2 – rx
2ry

2 = 0

ry
2 (xk + 1)2 + rx

2(yk-1/2)2 – rx
2ry

2 = pk ……Eq. 3

ry
2 (xk+1 + 1)2 + rx

2(yk+1-1/2)2 – rx
2ry

2 = pk+1

ry
2 ((xk+1) + 1)2 + rx

2(yk+1-1/2)2 – rx
2ry

2 = pk+1 …….Eq. 4

pk+1 - pk -> (Eq. 4 –Eq. 3)

ry
2 ((xk+1) + 1)2 + rx

2(yk+1-1/2)2 – rx
2ry

2 - ry
2 (xk + 1)2 - rx

2(yk-1/2)2 + rx
2ry

2

ry
2 ((xk+1) + 1)2 - ry

2 (xk + 1)2 + rx
2(yk+1-1/2)2 - rx

2(yk-1/2)2

ry
2 (2(xk+1) + 1) + rx

2(yk+1
2 - yk

2 – yk+1 + yk) = pk+1 - pk …...Eq. 5

pk < 0: yk+1 = yk

pk+1=pk + ry
22xk+1 + ry

2

pk >= 0: yk+1 = yk - 1

pk+1=pk +2xk+1ry
2 + ry

2 – 2yk+1rx
2

Initial decision parameter

Put (0, ry)in Eq. 3

P0 = ry
2 + rx

2/4 – ryrx
2

Region- 2:

(xk , yk - 1) or (xk + 1, yk - 1) so the midpoint will be (xk + 1/2, yk - 1)

ry
2x2 + rx

2 y2 – rx
2ry

2 = 0

ry
2 (xk + 1/2)2 + rx

2(yk - 1)2 – rx
2ry

2 = p2k ……Eq. 6

ry
2 (xk+1 + 1/2)2 + rx

2(yk+1-1)2 – rx
2ry

2 = p2k+1

ry
2 (xk+1 + 1/2)2 + rx

2((yk – 1) - 1)2 – rx
2ry

2 = p2k+1 …….Eq. 7

Eq. 7 – Eq. 6

ry
2 (xk+1 + 1/2)2 - ry

2 (xk + 1/2)2 + rx
2((yk – 1) - 1)2 – rx

2(yk - 1)2 + rx
2ry

2 - rx
2ry

2 = p2k+1 - p2k

ry
2 (xk+1

2 + ¼ + xk+1) - ry
2 (xk

2 + ¼ + xk)
 + rx

2[(yk – 1)2 + 1 – 2(yk – 1)]2 – rx
2(yk

2
 + 1 +2 yk)

ry
2 {xk+1

2 + ¼ + xk+1 - xk
2 - ¼ - xk} + rx

2 {yk
2 + 1 – 2yk + 1 – 2yk + 2 - yk

2 – 1 + 2 yk}

ry
2 {xk+1

2 + xk+1 - xk
2 - xk} + rx

2 {– 2yk+1 + 1}

p2k+1 - p2k
 = ry

2 {xk+1
2 + xk+1 - xk

2 - xk} + rx
2 {1 – 2yk+1}

pk > 0: xk+1 = xk

p2k+1 = p2k– 2yk+1 xk
2 + rx

2 ……Eq. 8

pk <= 0: xk+1 = xk + 1

p2k+1 = p2k
 + ry

2 (2xk+1) – 2yk+1 rx
2 + rx

2 ……Eq. 9

Initial Decision Parameter: will be derived by putting last point of region 1 in the equation

p20 = ry
2 (xk + 1/2)2 + rx

2(yk - 1)2 – rx
2ry

2
 (x==y)

p20 = ry
2 (x + 1/2)2 + rx

2(y - 1)2 – rx
2ry

2 …..Eq. 10

Algorithm:

1. Read radii rx and ry
2. Initialize starting point of region 1 as x = 0 and y = ry
3. Calculate
 P10 = ry

2 + rx
2/4 – ryrx

2
4. Calculate
 dx = 2ry

2x and dy = 2 rx
2y

5. Repeat while (dx < dy)
 Plot(x, y)
 If(p1 < 0){
 x =x+1
 Update dx (2ry

2 x = old dx +2 ry
2)

 P1 = p1 +2ry
2x +ry

2
 }
 else {

 x = x + 1, y = y – 1
 Update dx (2ry

2 x = old dx + 2 ry
2)

 Update dy (2rx
2 y = old dy - 2 rx

2)
 p1 = p1 + dx - dy +ry

2
 }
6. When (dx >= dy) plot region 2 as:
7. Find
 p20 = ry

2 (x + 1/2)2 + rx
2(y - 1)2 – rx

2ry
2

8. Repeat till (y > 0)
 Plot (x, y)
 If(p2 > 0){
 x = x
 y = y-1
 Update dy : 2rx

2 y
 p2 = p2 – dy + rx

2
 }
 else{
 x = x + 1
 y = y – 1
 dy = dy – 2rx

2
 dx = dx + 2ry

2
 p2 = p2 + dx –dy +rx

2
 }
9. END

Filled Area Primitives:

Region filling is the process of filling image or region. Filling can be of boundary or interior
region as shown in fig. Boundary Fill algorithms are used to fill the boundary and flood-fill
algorithm is used to fill the interior.

Boundary Filled Algorithm:
This algorithm uses the recursive method. First of all, a starting pixel called as the seed is
considered. The algorithm checks boundary pixel or adjacent pixels are coloured or not. If the
adjacent pixel is already filled or coloured then leave it, otherwise fill it. The filling is done using
four connected or eight connected approaches.

Four connected approaches is more suitable than the eight connected approaches.

1. Four connected approaches: In this approach, left, right, above, below pixels are tested.

2. Eight connected approaches: In this approach, left, right, above, below and four diagonals
are selected.

Boundary can be checked by seeing pixels from left and right first. Then pixels are checked by
seeing pixels from top to bottom. The algorithm takes time and memory because some recursive
calls are needed.

Algorithm:
1. Initialize the 4 values namely x, y, fill_color, and default_color.
2. Define the value of boundary pixel color or boundary color.
3. Check if the current pixel is of default color and if yes then repeat step 4 and 5 till the
boundary pixels are reached
4. Change the default color with the fill color at the current pixel.
5. Repeat step 3 and 4 for the neighboring 4 pixel.
6. Exit

void boundaryFill4(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);
 boundaryFill4(x + 1, y, fill_color, boundary_color);
 boundaryFill4(x, y + 1, fill_color, boundary_color);
 boundaryFill4(x - 1, y, fill_color, boundary_color);
 boundaryFill4(x, y - 1, fill_color, boundary_color);
 }
}

8- Pixel connecting approach:

void boundaryFill8(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);

Algorithm:
1. Initialize the 4 values namely x, y, fill_color, and default_color.
2. Define the value of boundary pixel color or boundary color.
3. Check if the current pixel is of default color and if yes then repeat step 4 and 5 till the
boundary pixels are reached
4. Change the default color with the fill color at the current pixel.
5. Repeat step 3 and 4 for the neighboring 4 pixel.
6. Exit

void boundaryFill4(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);
 boundaryFill4(x + 1, y, fill_color, boundary_color);
 boundaryFill4(x, y + 1, fill_color, boundary_color);
 boundaryFill4(x - 1, y, fill_color, boundary_color);
 boundaryFill4(x, y - 1, fill_color, boundary_color);
 }
}

8- Pixel connecting approach:

void boundaryFill8(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);

Algorithm:
1. Initialize the 4 values namely x, y, fill_color, and default_color.
2. Define the value of boundary pixel color or boundary color.
3. Check if the current pixel is of default color and if yes then repeat step 4 and 5 till the
boundary pixels are reached
4. Change the default color with the fill color at the current pixel.
5. Repeat step 3 and 4 for the neighboring 4 pixel.
6. Exit

void boundaryFill4(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);
 boundaryFill4(x + 1, y, fill_color, boundary_color);
 boundaryFill4(x, y + 1, fill_color, boundary_color);
 boundaryFill4(x - 1, y, fill_color, boundary_color);
 boundaryFill4(x, y - 1, fill_color, boundary_color);
 }
}

8- Pixel connecting approach:

void boundaryFill8(int x, int y, int fill_color,int boundary_color)
{
 if(getpixel(x, y) != boundary_color && getpixel(x, y) != fill_color)
 {
 putpixel(x, y, fill_color);

 boundaryFill8(x + 1, y, fill_color, boundary_color);
 boundaryFill8(x, y + 1, fill_color, boundary_color);
 boundaryFill8(x - 1, y, fill_color, boundary_color);
 boundaryFill8(x, y - 1, fill_color, boundary_color);
 boundaryFill8(x - 1, y - 1, fill_color, boundary_color);
 boundaryFill8(x - 1, y + 1, fill_color, boundary_color);
 boundaryFill8(x + 1, y - 1, fill_color, boundary_color);
 boundaryFill8(x + 1, y + 1, fill_color, boundary_color);
 }
}

Flood Filled Algorithm:
In this method, a point or seed which is inside region is selected. This point is called a seed point.
Then four connected approaches or eight connected approaches is used to fill with specified
color.

The flood fill algorithm has many characters similar to boundary fill. But this method is more
suitable for filling multiple colors boundary. When boundary is of many colors and interior is to
be filled with one color we use this algorithm.

Algorithm:

Flood-Fill (node, target-color, replacement-color)

1. If target-color is equal to replacement-color, return.
2. If the color of node is not equal to target-color, return.

 3. Set the color of the node to replacement-color.
 Perform Flood-Fill (one step to the south of node, target-color, replacement-color)
 Perform Flood-Fill (one step to the north of node, target-color, replacement-color).
 Perform Flood-Fill (one step to the west of node, target-color, replacement-color).
 Perform Flood-Fill (one step to the east of node, target-color, replacement-color)
 5. Return.

4- Way connected:
if(getpixel(x,y)==defaultColor)
 {
 putpixel(x,y,fillColor);
 flood(x+1,y,fillColor,defaultColor);
 flood(x-1,y,fillColor,defaultColor);
 flood(x,y+1,fillColor,defaultColor);
 flood(x,y-1,fillColor,defaultColor);
 }

8- Way connected:
if(current==old)
 {
 putpixel(x,y,newcol);
 floodfill(x+1,y,old,newcol);
 floodfill(x-1,y,old,newcol);
 floodfill(x,y+1,old,newcol);
 floodfill(x,y-1,old,newcol);
 floodfill(x+1,y+1,old,newcol);
 floodfill(x-1,y+1,old,newcol);
 floodfill(x+1,y-1,old,newcol);
 floodfill(x-1,y-1,old,newcol);
 }

Disadvantage:
1. Very slow algorithm
2. May be fail for large polygons
3. Initial pixel required more knowledge about surrounding pixels.

Assignment-3

1. Derive all the equations of circle drawing using Bresenham’s circle drawing algorithm
with example.

UNIT- IV

Translation

Transformation:

Transformation means changing some graphics into something else by applying rules. We can
have various types of transformations such as translation, scaling up or down, rotation, shearing,
etc. When a transformation takes place on a 2D plane, it is called 2D transformation.

Transformations play an important role in computer graphics to reposition the graphics on the
screen and change their size or orientation.

Translation:

A translation moves an object to a different position on the screen. You can translate a point in
2D by adding translation coordinate (tx, ty) to the original coordinate X, Y to get the new
coordinate X′, Y′.

From the above figure, you can write that −

X’ = X + tx

Y’ = Y + ty

The pair (tx, ty) is called the translation vector or shift vector. The above equations can also be
represented using the column vectors.

P=[X] / [Y]

P' = [X′] / [Y′]

T = [tx] / [ty]

We can write it as −

P’ = P + T

Transformation Numerical:

Translation:

1. Given a circle C with radius 10 and centre coordinates (1, 4). Apply the translation with
distance 5 towards X axis and 1 towards Y axis. Obtain the new coordinates of C without
changing its radius.

2. Given a square with coordinate points A(0, 3), B(3, 3), C(3, 0), D(0, 0). Apply
the translation with distance 1 towards X axis and 1 towards Y axis. Obtain the new coordinates
of the square.

Rotation:

1. Given a line segment with starting point as (0, 0) and ending point as (4, 4). Apply 30 degree
rotation anticlockwise direction on the line segment and find out the new coordinates of the line.

2. Given a triangle with corner coordinates (0, 0), (1, 0) and (1, 1). Rotate the triangle by 90
degree anticlockwise direction and find out the new coordinates.

Scaling:

1. Given a square object with coordinate points A(0, 3), B(3, 3), C(3, 0), D(0, 0). Apply the
scaling parameter 2 towards X axis and 3 towards Y axis and obtain the new coordinates of the
object.

Viewing & Clipping:

The primary use of clipping in computer graphics is to remove objects, lines, or line segments
that are outside the viewing pane.

Point Clipping:

Clipping a point from a given window is very easy. Consider the following figure, where the
rectangle indicates the window. Point clipping tells us whether the given point X,YX,Y is within
the given window or not; and decides whether we will use the minimum and maximum
coordinates of the window.

The X-coordinate of the given point is inside the window, if X lies in between Wx1 ≤ X ≤ Wx2.
Same way, Y coordinate of the given point is inside the window, if Y lies in between Wy1 ≤ Y ≤
Wy2.

Line Clipping
Cohen- Sutherland Line Clipping:

This algorithm uses the clipping window as shown in the following figure. The minimum
coordinate for the clipping region is (XWmin,YWmin)(XWmin,YWmin) and the maximum
coordinate for the clipping region is (XWmax,YWmax)(XWmax,YWmax).

We will use 4-bits to divide the entire region. These 4 bits represent the Top, Bottom, Right, and
Left of the region as shown in the following figure. Here, the TOP and LEFT bit is set to 1
because it is the TOP-LEFT corner.

Algorithm
Step 1 − Assign a region code for each endpoints.

Step 2 − If both endpoints have a region code 0000 then accept this line.

Step 3 − Else, perform the logical ANDoperation for both region codes.

 Step 3.1 − If the result is not 0000, then reject the line.

 Step 3.2 − Else you need clipping.

 Step 3.2.1 − Choose an endpoint of the line that is outside the window.

 Step 3.2.2 − Find the intersection point at the

window boundary baseonregioncode.

 Step 3.2.3 − Replace endpoint with the intersection point and update the

region code.

 Step 3.2.4 − Repeat step 2 until we find a clipped line either trivially accepted

or trivially rejected.

Step 4 − Repeat step 1 for other lines.

UNIT- V

3D Display Method

In the 2D system, we use only two coordinates X and Y but in 3D, an extra coordinate Z is
added. 3D graphics techniques and their application are fundamental to the entertainment,
games, and computer-aided design industries. It is a continuing area of research in scientific
visualization.

Perspective Views:

1-Point Perspective

2- Point Perspective

3- Point Perspective

Polygon Surfaces

- Polygon surface can be thought of the surface composed of polygon faces

- The most commonly used boundary representation for a 3-D object is a set of polygon surfaces
that enclose the object interior

Methods of polygon surface representations are:

1. Polygon Table

2. Plane equation

3. Polygon Meshes

Polygon Tables: Representation of vertex coordinates, edges and other property of polygon into
table form is called polygon table

Polygon data tables can be organized into two groups:

(i) Geometric Table

(ii) Attribute Table

Geometric Table: Contains vertex coordinate and the other parameter which specify geometry
of polygon.

Attribute Table: stores other information like color, transparency etc.

Plane Equation:

General equation of plane is give =n as,

 Ax + By+ Cz + D = 0

Where (x,y,z) is any point on tha plane and A, B, C and D are constant.

We can obtain the values of A, B, C, and D by solving a set of three plane equations using the
coordinate values for three non collinear points in the plane. Let us assume that three vertices of
the plane are (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the
values of A, B, C, and D.

A/D x1 + B/D y1 + C/D z1 = -1

A/D x2 + B/D y2 + C/D z2 = -1

A/D x3 + B/D y3 + C/D z3 = -1

Polygon Meshes:

3D surfaces and solids can be approximated by a set of polygonal and line elements. Such
surfaces are called polygonal meshes. In polygon mesh, each edge is shared by at most two
polygons. The set of polygons or faces, together form the “skin” of the object.

This method can be used to represent a broad class of solids/surfaces in graphics. A polygonal
mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be
represented by three ways −

 Explicit representation
 Pointers to a vertex list
 Pointers to an edge list

Curves in Computer Graphics

Representation of curves
B-Spline Curve
Bezier Curve
Parametric Curve
Spline Curve

3d viewing pipeline

Introduction: In two-dimensional graphics applications, viewing operations transfer positions
from the world-coordinate plane to pixel positions in the plane of the output device. Using the
rectangular boundaries for the world-coordinate window and the device viewport, a two-
dimensional package maps the world scene to device coordinates and clips the scene against the
four boundaries of the viewport. For three-dimensional graphics applications, the situation is a
bit more involved, since we now have more choices as to how views are to be generated. First of
all, we can view an object from any spatial position: from the front, from above, or from the
back.

The steps for computer generation of a view of a three-dimensional scene are somewhat
analogous to the processes involved in taking a photograph. To take a snapshot, we first need to
position the camera at a particular point in space. Then we need to decide on the camera
orientation (Fig. 12-1): Which way do we point the camera and how should we rotate it around
the line of sight to set the up direction for the picture? Finally, when we snap the shutter, the
scene is cropped to the size of the "window" (aperture) of the camera, and light from the visible
surfaces is projected onto the camera film. We need to keep in mind, however, that the camera
analogy can be carried only so far, since we have more flexibility and many more options for
generating views of a scene with a graphics package than we do with a camera.

Figure 12-2 shows the general processing steps for modeling and converting a world-coordinate
description of a scene to device coordinates. Once the scene has been modeled, world-coordinate
positions are converted to viewing coordinates. The viewing-coordinate system is used in
graphics packages as a reference for specifying the observer viewing position and the position of
the projection plane, which we can think of in analogy with the camera film plane. Next,
projection operations are performed to convert the viewing-coordinate description of the scene to
coordinate positions on the projection plane, which will then be mapped to the output device.
Objects outside the specified viewing limits are clipped h m further consideration, and the
remaining objects are processed through visible-surface identification and surface-rendering
procedures to produce the display within the device viewport.

Projection:

In the 2D system, we use only two coordinates X and Y but in 3D, an extra coordinate Z is
added. 3D graphics techniques and their application are fundamental to the entertainment,
games, and computer-aided design industries. It is a continuing area of research in scientific
visualization.

Furthermore, 3D graphics components are now a part of almost every personal computer and,
although traditionally intended for graphics-intensive software such as games, they are
increasingly being used by other applications.

Parallel Projection

Parallel projection discards z-coordinate and parallel lines from each vertex on the object are
extended until they intersect the view plane. In parallel projection, we specify a direction of
projection instead of center of projection.

In parallel projection, the distance from the center of projection to project plane is infinite. In
this type of projection, we connect the projected vertices by line segments which correspond to
connections on the original object.

Parallel projections are less realistic, but they are good for exact measurements. In this type of
projections, parallel lines remain parallel and angles are not preserved. Various types of parallel
projections are shown in the following hierarchy.

Orthographic
Projection

In orthographic projection the direction of projection is normal to the projection of the plane.
There are three types of orthographic projections −

 Front Projection

 Top Projection

 Side Projection

Oblique Projection

In oblique projection, the direction of projection is not normal to the projection of plane. In
oblique projection, we can view the object better than orthographic projection.

There are two types of oblique projections − Cavalier and Cabinet. The Cavalier projection
makes 45° angle with the projection plane. The projection of a line perpendicular to the view
plane has the same length as the line itself in Cavalier projection. In a cavalier projection, the
foreshortening factors for all three principal directions are equal.

The Cabinet projection makes 63.4° angle with the projection plane. In Cabinet projection, lines
perpendicular to the viewing surface are projected at ½ their actual length. Both the projections
are shown in the following figure −

Isometric Projections

Orthographic projections that show more than one side of an object are called axonometric
orthographic projections. The most common axonometric projection is an isometric
projection where the projection plane intersects each coordinate axis in the model coordinate
system at an equal distance. In this projection parallelism of lines are preserved but angles are
not preserved. The following figure shows isometric projection −

Perspective Projection

In perspective projection, the distance from the center of projection to project plane is finite and
the size of the object varies inversely with distance which looks more realistic.

The distance and angles are not preserved and parallel lines do not remain parallel. Instead, they
all converge at a single point called center of projection or projection reference point. There
are 3 types of perspective projections which are shown in the following chart.

 One point perspective projection is simple to draw.

 Two point perspective projection gives better impression of depth.

 Three point perspective projection is most difficult to draw.

The following figure shows all the three types of perspective projection −

Translation

In 3D translation, we transfer the Z coordinate along with the X and Y coordinates. The process
for translation in 3D is similar to 2D translation. A translation moves an object into a different
position on the screen.

The following figure shows the effect of translation −

A point can be translated in 3D by adding translation coordinate (tx,ty,tz)(tx,ty,tz) to the original
coordinate X,Y,ZX,Y,Z to get the new coordinate X′,Y′,Z′X′,Y′,Z′.

3D Transformation

The geometric transformations play a vital role in generating images of three Dimensional
objects with the help of these transformations. The location of objects relative to others can be
easily expressed. Sometimes viewpoint changes rapidly, or sometimes objects move in relation
to each other. For this number of transformation can be carried out repeatedly.

1. Translation

It is the movement of an object from one position to another position. Translation is done using
translation vectors. There are three vectors in 3D instead of two. These vectors are in x, y, and z
directions. Translation in the x-direction is represented using Tx. The translation is y-direction is
represented using Ty. The translation in the z- direction is represented using Tz.

If P is a point having co-ordinates in three directions (x, y, z) is translated, then after translation
its coordinates will be (x1 y1 z1) after translation. Tx Ty Tz are translation vectors in x, y, and z
directions respectively.

Three-dimensional transformations are performed by transforming each vertex of the object. If
an object has five corners, then the translation will be accomplished by translating all five points
to new locations. Following figure 1 shows the translation of point figure 2 shows the translation
of the cube.

Matrix for translation

Matrix representation of point translation

Point shown in fig is (x, y, z). It become (x1,y1,z1) after translation. Tx Ty Tz are translation
vector.

Example: A point has coordinates in the x, y, z direction i.e., (5, 6, 7). The translation is done in
the x-direction by 3 coordinate and y direction. Three coordinates and in the z- direction by two
coordinates. Shift the object. Find coordinates of the new position.

Solution: Co-ordinate of the point are (5, 6, 7)
 Translation vector in x direction = 3
 Translation vector in y direction = 3
 Translation vector in z direction = 2
 Translation matrix is

Multiply co-ordinates of point with translation matrix

 = [5+0+0+30+6+0+30+0+7+20+0+0+1] = [8991]

x becomes x1=8
y becomes y1=9
z becomes z1=9

2. Scaling

Scaling is used to change the size of an object. The size can be increased or decreased. The
scaling three factors are required Sx Sy and Sz.

Sx=Scaling factor in x- direction
Sy=Scaling factor in y-direction
Sz=Scaling factor in z-direction

Matrix for Scaling

Scaling of the object relative to a fixed point

Following are steps performed when scaling of objects with fixed point (a, b, c). It can be
represented as below:

1. Translate fixed point to the origin

2. Scale the object relative to the origin

3. Translate object back to its original position.

In figure (a) point (a, b, c) is shown, and object whose scaling is to done also shown in steps in
fig (b), fig (c) and fig (d).

3. Rotation

It is moving of an object about an angle. Movement can be anticlockwise or clockwise. 3D
rotation is complex as compared to the 2D rotation. For 2D we describe the angle of rotation, but
for a 3D angle of rotation and axis of rotation are required. The axis can be either x or y or z.

Following figures shows rotation about x, y, z- axis

Following figure show rotation of the object about the Y axis

Following figure show rotation of the object about the Z axis

Hello Java Program for Beginners

UNIT- VI

Illumination Model:

Halftone and Dither

Color Models

Color spaces are the mathematical representation of a set of colors. There are many color
models. Some of them are RGB, CMYK, YIQ, HSV, and HLS, etc. These color spaces are
directly related to saturation and brightness. All of these color spaces can be derived using RGB
information using devices such as cameras and scanners.

RGB Color Space

RGB stands for Red, Green, and Blue. This color space is widely used in computer graphics.
RGB are the main colors from which many colors can be made.

RGB can be represented in the 3-dimensional form:

Below table is 100% RGB color bar contains values for 100% amplitude, 100% saturated, and
for video test signal.

CMYK Color Model

CMYK stands for Cyan, Magenta, Yellow and Black. CMYK color model is used in
electrostatic and ink-jet plotters which deposits the pigmentation on paper. In these model,
specified color is subtracted from the white light rather than adding blackness. It follows the
Cartesian coordinate system and its subset is a unit cube.

HSV Color Model

HSV stands for Hue, Saturation, and Value (brightness). It is a hexcone subset of the
cylindrical coordinate system. The human eye can see 128 different hues, 130 different
saturations and number values between 16 (blue) and 23 (yellow).

HLS Color Model

HLS stands for Hue Light Saturation. It is a double hexcone subset. The maximum saturation
of hue is S= 1 and L= 0.5. It is conceptually easy for people who want to view white as a point.

Animation Functions

1. Morphing: Morphing is an animation function which is used to transform object shape from
one form to another is called Morphing. It is one of the most complicated transformations. This
function is commonly used in movies, cartoons, advertisement, and computer games.

Animation Functions

1. Morphing: Morphing is an animation function which is used to transform object shape from
one form to another is called Morphing. It is one of the most complicated transformations. This
function is commonly used in movies, cartoons, advertisement, and computer games.

Animation Functions

1. Morphing: Morphing is an animation function which is used to transform object shape from
one form to another is called Morphing. It is one of the most complicated transformations. This
function is commonly used in movies, cartoons, advertisement, and computer games.

The process of Morphing involves three steps:

1. In the first step, one initial image and other final image are added to morphing application
as shown in fig: Ist & 4th object consider as key frames.

2. The second step involves the selection of key points on both the images for a smooth
transition between two images as shown in 2nd object.

3. In the third step, the key point of the first image transforms to a corresponding key point of the
second image as shown in 3rd object of the figure.

2. Wrapping: Wrapping function is similar to morphing function. It distorts only the initial
images so that it matches with final images and no fade occurs in this function.

Triggers in SQL (Hindi)

3. Tweening: Tweening is the short form of 'inbetweening.' Tweening is the process of
generating intermediate frames between the initial & last final images. This function is popular
in the film industry.

The process of Morphing involves three steps:

1. In the first step, one initial image and other final image are added to morphing application
as shown in fig: Ist & 4th object consider as key frames.

2. The second step involves the selection of key points on both the images for a smooth
transition between two images as shown in 2nd object.

3. In the third step, the key point of the first image transforms to a corresponding key point of the
second image as shown in 3rd object of the figure.

2. Wrapping: Wrapping function is similar to morphing function. It distorts only the initial
images so that it matches with final images and no fade occurs in this function.

Triggers in SQL (Hindi)

3. Tweening: Tweening is the short form of 'inbetweening.' Tweening is the process of
generating intermediate frames between the initial & last final images. This function is popular
in the film industry.

The process of Morphing involves three steps:

1. In the first step, one initial image and other final image are added to morphing application
as shown in fig: Ist & 4th object consider as key frames.

2. The second step involves the selection of key points on both the images for a smooth
transition between two images as shown in 2nd object.

3. In the third step, the key point of the first image transforms to a corresponding key point of the
second image as shown in 3rd object of the figure.

2. Wrapping: Wrapping function is similar to morphing function. It distorts only the initial
images so that it matches with final images and no fade occurs in this function.

Triggers in SQL (Hindi)

3. Tweening: Tweening is the short form of 'inbetweening.' Tweening is the process of
generating intermediate frames between the initial & last final images. This function is popular
in the film industry.

4. Panning: Usually Panning refers to rotation of the camera in horizontal Plane. In computer
graphics, Panning relates to the movement of fixed size window across the window object in a
scene. In which direction the fixed sized window moves, the object appears to move in the
opposite direction as shown in fig:

If the window moves in a backward direction, then the object appear to move in the forward
direction and the window moves in forward direction then the object appear to move in a
backward direction.

4. Panning: Usually Panning refers to rotation of the camera in horizontal Plane. In computer
graphics, Panning relates to the movement of fixed size window across the window object in a
scene. In which direction the fixed sized window moves, the object appears to move in the
opposite direction as shown in fig:

If the window moves in a backward direction, then the object appear to move in the forward
direction and the window moves in forward direction then the object appear to move in a
backward direction.

4. Panning: Usually Panning refers to rotation of the camera in horizontal Plane. In computer
graphics, Panning relates to the movement of fixed size window across the window object in a
scene. In which direction the fixed sized window moves, the object appears to move in the
opposite direction as shown in fig:

If the window moves in a backward direction, then the object appear to move in the forward
direction and the window moves in forward direction then the object appear to move in a
backward direction.

5. Zooming: In zooming, the window is fixed an object and change its size, the object also
appear to change in size. When the window is made smaller about a fixed center, the object
comes inside the window appear more enlarged. This feature is known as Zooming In.

When we increase the size of the window about the fixed center, the object comes inside the
window appear small. This feature is known as Zooming Out.

6. Fractals: Fractal Function is used to generate a complex picture by using Iteration. Iteration
means the repetition of a single formula again & again with slightly different value based on the
previous iteration result. These results are displayed on the screen in the form of the display
picture.

Types of animations

Vector vs Raster
Simply put, vector and raster graphics are the two most common ways of handling digital
images.

 Vector images are made up of mathematical formulas that express points and curves to
create lines and shapes of single colors.

Vector graphics are excellent for the web, architectural design or anything that requires precision
of line like technical drawings that can be easily transferred to a machine for moulds or 3d
printing etc
They are also used heavily in 2d animation as a particular style that was initially popularized by
Flash but has now become ubiquitous. Many animation programs now have the ability to work in
vectors.

5. Zooming: In zooming, the window is fixed an object and change its size, the object also
appear to change in size. When the window is made smaller about a fixed center, the object
comes inside the window appear more enlarged. This feature is known as Zooming In.

When we increase the size of the window about the fixed center, the object comes inside the
window appear small. This feature is known as Zooming Out.

6. Fractals: Fractal Function is used to generate a complex picture by using Iteration. Iteration
means the repetition of a single formula again & again with slightly different value based on the
previous iteration result. These results are displayed on the screen in the form of the display
picture.

Types of animations

Vector vs Raster
Simply put, vector and raster graphics are the two most common ways of handling digital
images.

 Vector images are made up of mathematical formulas that express points and curves to
create lines and shapes of single colors.

Vector graphics are excellent for the web, architectural design or anything that requires precision
of line like technical drawings that can be easily transferred to a machine for moulds or 3d
printing etc
They are also used heavily in 2d animation as a particular style that was initially popularized by
Flash but has now become ubiquitous. Many animation programs now have the ability to work in
vectors.

5. Zooming: In zooming, the window is fixed an object and change its size, the object also
appear to change in size. When the window is made smaller about a fixed center, the object
comes inside the window appear more enlarged. This feature is known as Zooming In.

When we increase the size of the window about the fixed center, the object comes inside the
window appear small. This feature is known as Zooming Out.

6. Fractals: Fractal Function is used to generate a complex picture by using Iteration. Iteration
means the repetition of a single formula again & again with slightly different value based on the
previous iteration result. These results are displayed on the screen in the form of the display
picture.

Types of animations

Vector vs Raster
Simply put, vector and raster graphics are the two most common ways of handling digital
images.

 Vector images are made up of mathematical formulas that express points and curves to
create lines and shapes of single colors.

Vector graphics are excellent for the web, architectural design or anything that requires precision
of line like technical drawings that can be easily transferred to a machine for moulds or 3d
printing etc
They are also used heavily in 2d animation as a particular style that was initially popularized by
Flash but has now become ubiquitous. Many animation programs now have the ability to work in
vectors.

 Raster images are made up of individual pixels of separate colors which, when combined
make up an image

Scanned photographs are a good example of raster images, as the computer has to break the real
photo down into individual pixels of separate colors.

Which one is better?

Like most things in life, it is about using the right tool for right job. There will be cases where
vectors are better because the cleaner lines and ability to scale up to a higher resolution give the
flexibility required, and other situations where raster or bitmaps are the way to go because they
can handle realistic images, photographs and artistic effects much better.

Key Frame Systems & Motion Specification

Key Framing

A key-frame is a frame where we define changes in animation. Every frame is a key-frame when
we create frame by frame animation. When someone creates a 3D animation on a computer, they
usually don’t specify the exact position of any given object on every single frame. They create
key-frames.

Key-frames are important frames during which an object changes its size, direction, shape or
other properties. The computer then figures out all the in-between frames and saves an extreme
amount of time for the animator. The following illustrations depict the frames drawn by user and
the frames generated by computer.

Motion Specification
There are several ways to specify the motion in any animation system.

The most general methods are:

 Direct motion specification
 Goal directed specification
 Kinematics and Dynamics specification

1. Direct Motion Specification:

 Explicit parameters are provided
 Explicitly rotation angle are given object in any frame
 Explicitly translation vectors are given
 Geometric transformation are applied to transform coordinate position

Example: Ping-Pong ball game in which bouncing ball changes its potions and size.

Advantages:

 Easily and explicitly parameters are provided to any object.
 Coordinate positions are easily applied to transform the object

Disadvantage:

 Acceleration of any object is not possible.

2. Goal directed system:

 Provide general term specification of the motion.
 Abstractly describe the action expressing a quality or characteristics apart from any

specific object.
 These are referred as goals directed because they provide specific motion of parameter.

Example: Dancing and running.

3. Kinematics and Dynamics:

 Kinematics: Motions parameter such as position, velocity and acceleration are specified
without reference to the forces.

 Dynamic:
o The forces that produce the velocities and accelerations are specified (Physically

based modeling)
o It uses laws such as Newton's law of motion.

Computer Graphics and Realism

Mid Term Question Paper

Previous Year Question Papers

