Techno India NJR Institute of Technology

Course File

Session 2021-22

Microwave Theory & Techniques(5EC4-05)

Ms. Payal Paliwal (Associate Professor) Department of ECES For Techno India NJR Institute of ECES For Techno India NJR Institute of ECES Const CT241CM Dr. Pankaj Kumar Porwal (Principal)

5EC4-05: Microwave Theory & Techniques

3L+I	JI+OP End Term Exam:	3 Hour
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microwaves-History of Microwaves, Microwave Frequency bands; Applications of Microwaves: Civil and Military, Medical, EMI/ EMC.	4
3	Mathematical Model of Microwave Transmission-Concept of Mode, Features of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwave transmission.	5
4	Analysis of RF and Microwave Transmission Lines-Coaxial line, Rectangularwaveguide, Circular waveguide, Strip line, Micro strip line.	4
5	Microwave Network Analysis-Equivalent voltages and currents for non- TEMlines, Networkparameters for microwave circuits, Scattering Parameters.	4
6	Passive and Active Microwave Devices-Microwave passive components: Directional Coupler, Power Divider, Magic Tee, Attenuator, Resonator.Microwave active components: Diodes, Transistors, Oscillators, Mixers.Microwave Semiconductor Devices: Gunn Dicdes, IMPATT diodes, Schottky Barrier diodes, PIN diodes.Microwave Tubes: Klystron, TWT, Magnetron.	6
7	Microwave Design Principles-Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power Amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design, Microwave Antennas- Antenna parameters, Antenna for ground based systems, Antennas for airborne and satellite borne systems, Planar Antennas.	6
8	Microwave Measurements-Power, Frequency and impedance measurement at microwave frequency, Network Analyzer and measurement of scattering parameters Spectrum Analyzerand measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure. Measurement of Microwave antenna parameters.	6
9	Microwave Systems-Radar, Terrestrial and Satellite Communication, Radio Aidsto Navigation, RFID, GPS. Modern Trends in Microwaves Engineering- Effect of Microwaves on human body, Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic Compatibility (EMI & EMC), Monolithic Microwave ICs, RFMEMS for microwave components Microwave Imaging	6

Office of Dean Academic Affairs

Rajasthan Technical University, Kota For Techno India NJR Institute of Technology Dr. Pankaj Kumar Porwa (Principal)

Course Overview:

Student will learn fundamentals of Microwave theory and techniques from this 40-hour course. In this course, student will study the fundamental concepts and application of different microwave devices and systems. Also, they will learn to design different microwave devices like amplifier, oscillator, mixer etc. used in various communication applications.

Course Outcomes:

CO.NO.	Cognitive Level	Course Outcome
1	Knowledge	Explain the working of rectangular waveguides in different modes.
2	Comprehension	Evaluate impedance, admittance, current gain and voltage gain using different types of parameters.
3	Application	Illustrate the working of microwave passive components.
4	Analysis	Calculate microwave measurements such as VSWR ,power measurements etc.
5	Analysis	Analyze the basic knowledge of the parameters related to the Microwave and RF.
6	Synthesis	Synthesize the Microwave semiconductor devices and their working.
7	Synthesis	Develop the MW devices and its application, and transmission of microwave over the satellite channel.

Prerequisites:

- 1. Fundamentals of microwave signal.
- 2. Must have completed the course on Electromagnetic theory.
- 3. Student should be able to solve the problems of physics of semiconductor devices.

Course Outcome Mapping with Program Outcome:

Course Outcome	Program Outcomes (PO's)											
CO. NO.		Domain Specific			Domain Ind				n Independent			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		1	1		0	0	0	0	0	0
CO2	2	2		1	1							
CO3	2	1	1	2	1							
CO4	3	2	1		1							
CO5	3	1	0	0	0	1						
CO6	2	1	0	0	2	1				1		
CO7	2	2	1	0	2	1				2		
1: Slight (Low), 2: N	loderat	te (Me	dium),	3: Sub	stantia	l (High	1)			white of Te	echnology
										India NJR	Institute of	1

For Techno India NJN III 20100 Üch I 20100 Dr. Pankaj Kumar Porwal (Principal)

Course Coverage Module Wise:

Lecture No.	Unit	Торіс	
1	1	IMPEDANCE TRANSFORMATION AND MATCHING:	
2	1	Lumped elements for MICs and MMICs	
3	1	printed inductors, capacitors and resonant elements	
4	1	The Smith chart- combined impedance-admittance chart	
5	1	Impedance matching with lumped elements (L networks)	
6	1	Smith chart solutions	
7	1	Single stub tuning in microstrip circuits using shunt stub	
8	1	Single section quarter-wave transformer,	
9	1	Numerical	
10	2	MICROWAVE DIODES AND DIODE CIRCUITS: Detector	
		Diodes	
11	2	Silicon crystal diode and Schottky diode	
12	2	V-I characteristic of detector diode	
13	2	basic operation of detection and mixing, single diode mixer circuit	
14	2	PIN diode - Equivalent circuit and characteristics of PIN diode	
15	2	single-pole PIN diode switches, single bit phase shifters	
16	2	Varactor diode- Device characteristics and circuit applications	
17	2	Gunn diode- Gunn effect, Gunn diode principle of operation and	
		characteristics	
18	2	Typical oscillator circuit using Gunn diode.	
19	2	IMPATT diode- Characteristics,	
20	2	IMPATT negative resistance, power output and efficiency, Numerical	
21	3	MICROWAVE TRANSISTORS AND CIRCUITS:	
22	3	Bipolar Junction Transistors (BJTs) – Geometry of silicon bipolar	
		transistor	
23	3	BJT DC biasing, microwave equivalent circuit and characteristics.	
24	3	Microwave Field Effect Transistors (FETs) - Physical structure and	
		principle of operation of JFET	
25	3	MOSFET and MESFET characteristics	
26	3	comparison of FET devices and circuit applications	
27	3	Single stage FET amplifier – Block schematic of a single stage FET	
		amplifier circuit, Stability considerations	
28	3	analysis and derivation of expression for transducer gain with	
		unilateral transistor, design criteria for maximum gain UR Institute of Technology	
		For Techno Illura	

For Techno India Nun India Cal Col Con St Cal St Col Dr. Pankaj Kumar Porwal (Principal)

29	4	KLYSTRONS: Limitations of conventional vacuum tubes	
30	4	Reflex klystron - Basic schematic, mechanism of operation, modes of	
		oscillation and modulation	
31	4	Velocity modulation and electron bunching (analytical treatment)	
32	4	Magnetrons- Types of magnetron, Basic structure of magnetron	
33	4	Magnetron analysis, resonant modes in magnetron, operation,	
		mechanism of oscillations	
34	4	practical consideration of cavity magnetron, Introduction to coaxial	
35	4	frequency angle and voltage tunable magnetrons, Numerical	
36	5	TWO CAVITY KLYSTRON AMPLIFIER- Basic schematic and	
		mechanism of operation.	
37	5	Travelling Wave Tube Amplifier- Basic schematic of helix type TWT	
		tube	
38	5	Introduction to CW power pulsed dual mode TWT	
39	5	TWT amplifier operational characteristics	
40	5	Applications of TWT, Crossed- field amplifier, Numerical	

TEXT/REFERENCE BOOKS

- 1. Microwave Engineering, David M. Pozar, Wiley.
- 2. Microwave Devices and circuits, Samuel Y. Liao, Prentice Hall
- 3. Microwave and Radar Engineering, M. Kulkarni, Umesh Publication

Teaching and Learning resources:

• MOOC (NPTEL): -https://nptel.ac.in/courses/108/101/108101112/

Assessment Methodology:

- 1. Practical exam using lab instruments.
- 2. Two Midterm exams where student have to showcase subjective learning.
- 3. Final Exam (subjective paper) at the end of the semester.

For Techno India NJR Institute of Technology Dr. Pankaj Kumar Porwa (Principal)

https://www.rtuonline.com

nol Holl No.	5E1395	ntoni. 19 3
B. Tech	h. V - Sem. (Main / Back) Exam., FebN CPEC Electronics & Communication E 5EC 4–05 Microwave Theory & Techn	March - 2021 Ingineering Iques
Time: 2 Hours	[To be convert	ted as per scheme] Max. Marks: 82 Min. Marks: 29
Instructions to Cana Attempt all ten Part B and two Schematic dia missing may used /calculat Use of follo (Mentioned in	didates: a questions from Part A, four questions out of ea o questions out of seven from Part C. agrams must be shown wherever necessary. suitably be assumed and stated clearly. Used must be stated clearly. wing supporting material is permitted du form No. 205)	i ght questions from Any data you feel Juits of quantities uring examination.
1. <u>NIL</u>	2. <u>NIL</u>	
*	<u>PART – A</u>	[10~7-70]
	(Answer should be given up to 25 words only)	(10×2-20)
	All questions are comparisony	
Q.1 If the cutoff free frequency after	quency of an air-filled waveguide is 20 GHz then v filling with a dielectric material of relative dielect	what will be its cut off ric constant $\varepsilon_r = 16$?
Q.2 Write S - paran	neter units.	
Q.3 Write two differ	rences between MIC and MMIC.	for an an of TE.
Q.4 If cutoff freque mode.	ncy of TE ₁₁ mode is 5 GHz then find the operation	ing frequency of TE
Q.5 Draw the struct	ure of an E – plane horn.	
Q.6 Write the name	of one dominant loss in waveguide.	
and D. Consider for	use of a MW amplifier	
Q.7 Define noise fig	Page 1 of 3	[1600]
(SE1395]		

For Techno India NJR Institute of Technology Const Charge Charges Dr. Pankaj Kumar Porwai (Principal)

- Q.8 Write the name of two MW devices which works on bulk and do not have any semiconductor junction.
- Q.9 Why PIN diode speed is more than a normal PN junction? Give only the main reason. Q.10 Write the name of two MW frequency bands used in military application.

PART – B

(Analytical/Problem solving questions) [4×8=32] Attempt any four questions

Q.1 Draw the structure of a MW BJT (Heterojunction) and explain its model and working.

- Q.2 Why TEM mode is not possible inside waveguide, support the reasons with Maxwell's equations. How TE and TM modes are excited in a rectangular waveguide?
- Q.3 Explain any one scheme of MW power measurement when the MW power is less than
 1 Watt. https://www.rtuonline.com
- 9.4 How differential negative mobility region achieved in MW devices? Draw the two valley diagram of a Gunn diode and explain its working.
- Q.5 Draw the electric and magnetic field line distributions/pattern in -
 - (a) Microstrip line
 - (b) Co-planar line
- Q.6 Design a power divider with matched terminations and operating at 10 GHz.
- Q.7 Explain and write the s-parameter of a magic tee when it's all port are matched. What will be the effect on port mismatch and how S-parameter change with it?
- Q.8 Draw the electric and magnetic field pattern inside a waveguide at -
 - (b) TM21

(SE1395)

Page 2 of 3

[1600]

For Techno India NJR Institute of Technology पैकर्ज परिवाली Dr. Pankaj Kumar Porwa (Principal)

https://www.rtuonline.com

PART - C

(Descriptive/Analytical/Problem Solving/Design Questions) [2×15=30] Attempt any two questions

- Q.1 Find all electric and magnetic fields expression for TM mode inside a rectangular waveguide with the help of Maxwell's equations.
- Q 2. If the S parameter of a two port MW system is S₁₁ = 2 + j1, S₂₁ = 4 + J1, S₁₂ = 2+j1 and S₁ = 0.6 + j2. Find its gain, reflection and transmission constant.
- Q.3 Explain the working of two hole directional coupler and design it for f = 5 GHz. Assume the waveguide is filled with $\varepsilon_r = 4$.
- Q.4 Explain the impedance measurement technique used in MW system.
- Q.5 Define the quality factor of a MW resonator and explain its -
 - (a) Under coupling
 - (b) Over coupling

÷.

- Critical coupling conditions
- Q.6 Define EMI and EMC. Draw two scheme for obtain the MW system which is compatible with required EMI/EMC.
- Q.7 How Klystron works? Draw the structure of a two cavity Klystron and explain the bunching phenomena in it.

.....

For Techno India NJR Institute of Technology Const CT 201 CV Dr. Pankaj Kumar Porwa (Principal)

Time: 3 Hours .

Maximum Marks : 120 Min. Passing Marks : 42

Instructions to Candidates:

Attempt all ten questions from Part A, five questions out of Seven from Part B and Four questions out of Five from Part C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

PART - A

(Answer should be given up to 25 words only)

All questions are compulsory

(10×2=20)

1. Define microwave.

2. Define TE mode for microwave transmission.

3. Draw the microstrip line structure.

Write down the S - matrix for a two port network.

5. Define coupling factor of a directional coupler.

6. Draw the energy band diagram of a Gunn diode.

7. Define transducer power gain for microwave amplifier.

8. Why do we require measuring VSWR in a microwave circuit?

9. Write down use of Network Analyzer.

10. What do you understand by monolithic microwave integrated circuits.

PART - B

(Analytical/Problem solving questions)

Attempt any five questions

(5×8=40)

1. Describe the losses associated with microwave transmission.

5E1395/2019

(1)

Contd....

For Techno India NJR III ulzaich Dr. Pankaj Kumar Porwa (Principal)

- 2. A microstrip line is to be designed and its specification is strip thickness $t \le 0.005h$; substrate board is alumina; relative dielectric constant $\epsilon_r = 10$; ratio of w/h = 0.95; Calculate
 - a) effective relative dielectric constant
 - b) characteristics impedance Z₀.
- A shunt impedance Z is connected across a transmission line with characteristics impedance Z_0 . Find the S Matrix of the junction.
- Prove that it is impossible to construct a perfectly matched, lossless, reciprocal three - port junction.
- Explain in detail the analytic approach to optimum oscillator design using S -Parameters.
- 6 Explain the experimental set up for measurement of radiation pattern and beam width. http://www.rtuonline.com
- 7. Draw the block diagram of a basic radar and explain how it works.

PART - C

(Descriptive/Analytical/Problem Solving/Design Questions)

Attempt any Four questions

(4×15=60)

For Techno India NJR Institute of Technology

นิครา นารุลเอง Dr. Pankaj Kumar Porwa (Principal)

1. The S - parameters of a two - port network are given by

 $S_{11} = 0.2 \angle 0, \ S_{22} = 0.1 \angle 0$

 $S_{12} = 0.6 \angle 90^{\circ}, S_{21} = 0.6 \angle 90^{\circ}$

- (3) Prove that the network is reciprocal but not lossless.
 - b) Find the return loss at port 1 when port 2 is short circuited.
- 2. Explain the velocity modulation and bunching process in two cavity klystron. Also derive the expression for bunching parameters.
- 3. Design a low pass, maximally flat lumped element fitter having a passband of
 - 0-2 GHz, and an attenuation of at least 20dB at 3.4 GHz. The characteristics impedance is 50_{Ω} .
- Describe the method of frequency and impedance measurement at microwave frequency.
- 5. (a) Describe the process involved in fabrication of MMICs.
 - (طر) Write down the medical and civil applications with suitable diagram of microwaves.
 - . c) Write short notes on microwave imaging.

(2)