Techno India NJR Institute of Technology

Course File Embedded System (5EC5-12)

Vivek Jain (Associate Professor)

Department of ECE
For Techno India NJR Institute of Technology

Gen For Techno India NJR Institute of Technology

Con From Techno India NJR Institute of Technology

Con From Technology

Con From Technology

Or. Pankaj Kumar Porwa

(Principal)

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC5-12: Embedded Systems

Credit: 2 Max. Marks: 100(IA:20, ETE:80)
2L+0T+0P End Term Exam: 2 Hours

SN	Contents					
1	Introduction: Objective, scope and outcome of the course.					
2	The concept of embedded systems design, Embedded microcontroller cores, embedded memories.					
3	Examples of embedded systems, Technological aspects of embedded systems: interfacing between analog and digital blocks, signal conditioning, digital signal processing. Sub system interfacing, interfacing with external systems, user interfacing.	10				
4	Design tradeoffs due to process compatibility, thermal considerations, etc., Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.	12				
	Total	28				

Course Overview:

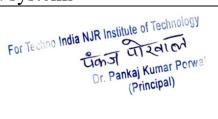
Course Objectives: On completion of this course, successful participants will be able to: Perform effectively as entry level Embedded Systems professionals. Develop and maintain applications written using Embedded C. Independently design and develop a hardware platform encompassing a microcontroller and peripherals.

Course Outcomes:

CO.NO.	Cognitive Level	Course Outcome
1	Comprehension	Discuss the evolution of MP technology
2	Application	Learn the depth knowledge of applying the concepts of real time applications. Demand of energy in India in various sectors.
3	Analysis	Identify, formulate, and solve engineering problems in MP based and to analyze their outcomes.
4	Synthesis	Design and Develop Embedded system and Programmed, debug and test it.

Prerequisites:

- 1. Fundamentals knowledge of binary number system.
- 2. Fundamentals knowledge of digital electronics.


Course Outcome Mapping with Program Outcome:

Course Outcome					Prog	gram (Outcor	nes (P	O's)			
CO. NO.	Domain Specific		Domain Independent									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	2	2	1	0	0	1	1
CO2	0	0	3	0	0	0	0	0	0	0	0	0
CO3	1	2	2	1	1	1	0	0	0	0	0	0
CO4	0	3	0	0	0	0	1	0	0	0	0	0
CO5	0	0	0	2	3	0	0	0	0	0	0	0
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)												

Course Coverage Module Wise:

Lecture	Unit	Topic				
No.						
1	1	ZERO LECTURE.				
2	2	THE CONCEPT OF EMBEDDED SYSTEMS DESIGN				
3	2	Embedded microcontroller cores				
4	2	Embedded microcontroller cores				
5	2	Embedded memories				
6	2	Embedded memories				
7	3	EXAMPLES OF EMBEDDED SYSTEMS				
8	3	Examples of embedded systems				
9	3	Technological aspects of embeddedsystems				
10	3	Technological aspects of embeddedsystems				
11	3	Interfacing between analog and digital blocks				
12	3	Signal conditioning				
13	3	Digital signal processing				
14	3	Sub system interfacing				
15	3	Interfacing with external systems				
16	3	User interfacing				
17	4	DESIGN TRADEOFFS DUE TO PROCESS				
		COMPATIBILITY				
18	4	Design tradeoffs due to process compatibility				
19	4	Thermal considerations				
20	4	Thermal considerations				
21	4	Software aspects of embedded systems				
22	4	Software aspects of embedded systems				
23	4	Real time programming languages				
24	4	Real time programming languages				
25	4	Real time programming languages				
26	4	Operating systems for embedded systems				
27	4	Operating systems for embedded systems				
28	4	Operating systems for embedded systems				

TEXT/REFERENCE BOOKS

- 1. Microprocessor Architecture: Programming and Applications with the 8085/8080A, R. S. Gaonkar, Penram International Publishing, 1996.
- 2. Embedded System Design, A Unified Hardware/Software Introduction, Frank Vahid/Tony Givaris, Jhon, Wiely Student Edition, 2006.
- 3. The 8051 Microcontroller & Embedded System, Muhammad Ali Mazidi, Pearsons.
- 4. The 8051 Microcontroller, Kenneth J. Ayala, Penram International Publishing, 1996.

NPTEL COUSES LINK

1. https://nptel.ac.in/courses/106/103/106103182/

QUIZ Link

- 1. https://www.javatpoint.com/embedded-systems-mcq
- 2. https://www.sanfoundry.com/embedded-systems-questions-answers-mcqs/
- 3. https://www.eguardian.co.in/embedded-systems-multiple-choice-questions-with-answers/

Faculty Notes Link

1. https://drive.google.com/drive/folders/10TWNEoIxLBCZE9KEGEMLhYPSD9dBHrCX?usp=sharing

Assessment Methodology:

- 1. Practical exam using Keil Compiler.
- 2. Two Midterm exams where student have to showcase subjective learning.
- 3. Final Exam (subjective paper) at the end of the semester.

SE1397

5E1397

B. Tech. V - Sem. (Main / Back) Exam., Feb.-March - 2021 PCC/PEC Electronics & Communication Engineering 5EC 5-12 Embedded Systems

Time: 2 Hours

[To be converted as per scheme]

Max. Marks: 65 Min. Marks: 23

Instructions to Candidates:

Attempt all five questions from Part A, four questions out of six questions from Part B and one questions out of three from Part C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

L NIL

2. NIL

PART - A

(Answer should be given up to 25 words only)

 $[5 \times 2 = 10]$

All questions are compulsory

- Q.1 Write the name of tools for designing embedded software.
- Q.2 What are the factors on which memory selection of embedded system depends?
- Q.3 What is Zigbee? Explain it.
- Q.4 What is small scale embedded system? Explain with example.
- Q.5 Differentiate between embedded systems and general purpose computing system.

[5E1397]

Page 1 of 2

[600]

For Techno India NJR Institute of Technology

Tand Technology

Or. Pankaj Kumar Porwal

(Principal)

PART - B

(Analytical/Problem solving questions)

 $[4 \times 10 = 40]$

Attempt any four questions

- Q.1 Explain the characteristics of embedded system.
- Q.2 Explain briefly embedded firmware development languages.
- Q.3 Discuss fundamental issues in Hardware- Software Co-Design.
- Q.4 Explain the concept of error handling in real time operating system.
- Q.5 Explain how the Product Level Communication Interface (External Communication Interface) is essential for communicating with various subsystems of embedded system.
- Q.6 Classify the embedded system based on generation with example.

PART - C

(Descriptive/Analytical/Problem Solving/Design Questions) [1×15=15] Attempt any one questions

- Q.1 What are Embedded Systems? Explain embedded system design process and briefly discuss application areas for embedded systems.
- Q.2 Write a short note on real time programming languages and operating system for embedded systems?
- Q.3 In the operating system context for embedded system explain the following -
 - (a) Task scheduling
 - (b) Interrupt handling
 - (c) Memory management

For Techno India NJR Institute of Technology पैकार्र पार्वाल Dr. Pankaj Kumar Porwa (Principal)