Techno India NJR Institute of Technology

Course File Structural Analysis-II (6CE4- 02)

Basant kumar Bansal

(Assistant Professor)

Department of CE

For Techno India NJR Institute of Technology पैकज यो Dr. Pankaj Kumar Porwa (Principal)

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus 3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-02: STRUCTURAL ANALYSIS-II

Credit: 3 Max. Marks: 150(IA:30,		ГE:120)						
3L+	OT+OP End Term Exam: 3	3 Hours						
SN	CONTENTS							
1	Introduction: Objective, scope and outcome of the course.	1						
2	Unit load method & their applications: deflection of determinate beams and frames, analysis of determinate and redundant frames up to two degree of redundancy, lack of fit in redundant frames. Introduction to Energy Methods: Strain energy for gradually applied, suddenly applied and impact loads, Strain energy due to axial loads, bending, shear and torsion;. Castiglione's theorems & their applications in analysis of determinate and redundant frames up to two degree of redundancy and trussed beams; Stresses due to temperature & lack of fit in redundant frames; deflection of determinate beams, frames using energy methods	12						
3	Influence line diagram & Rolling load: ILD for beams & frames, Muller-Breslau principle and its application for drawing ILD, Rolling load, maximum stress resultants in a member/section, absolute maximum stress resultant in a structure.	10						
4	Arches: analysis of three hinged two hinged and fixed type parabolic arches with supports at the same level and at different levels.	7						
5	Unsymmetrical bending: Definition, location of NA, computation of stresses and deflection, shear centre and its location,	6						
6	Approximate methods for lateral loads: Analysis of multistory frames by portal method, cantilever method & factor method. Analysis of determinate space trusses by tension coefficient method.	6						
	TOTAL	42						

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Syllabus of 3rd Year B. Tech. (CE) for students admitted in Session 2017-18 onwards.

Page 3

For Techno India NJR Institute of Technology Tich I al col Dr. Pankaj Kumar Perwa (Principal)

Course Overview:

This course is designed to review the fundamentals and practices of structural engineering within the Civil Engineering curriculum. Students will explore the concept of global structural stability, theory of structural analysis, and methods in structural analysis. Students who successfully complete this course will be able to:

Course Objective:

Understand analysis of statically indeterminate structures and its application to one 1. dimensional member

- 2. Understand different methods and their advantages to analyze the indeterminate structures
- Understand matrix method of analysis and be able to develop computer programs to analyze 3. two-dimensional plane structures

4. Understand plastic analysis of structures and be able to analyze collapse load for beams and frames5. Ability to model and analyze structural systems (bridge and building) with the aid of SAP 2000 and ETABS software.

CO. NO.	Cognitive Level	Course Outcome
1	Application	The student will be able to state the advanced methods of analysis of structures like flexibility and stiffness method, kanis method, Moment distribution method, Slope and deflection method.
2	Analysis	Learner will be able to test and analysis of beams by using an advanced method of analysis.
3	Analysis	Students will be able to define the procedure for doing analysis of portal frame.
4	Application	Learner can explain the procedure to calculate stresses, shear center and deflection of unsymmetrical section.
5	Analysis	Learner can explain the procedure for analysis of multistory frames by portal, cantilever and factor methods

Course Outcomes:

Prerequisites:

- 1. Student will be able to study advanced methods of analysis of structures
- 2. Students are able to do the analysis of beams by using an advanced method of analysis
- 3. Students are able to do analysis of portal frame, cantilever frame.
- 4. Students will be able to determine response of structures by classical, iterative and matrix methods.

5. Students will be able to understand analysis of indecommente structures For Techno India NJR Institute indecommente structures Under Stand Const Co

STRUCTURAL ANALYSIS-II															
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO362.1	2	2	2	2	0	1	1	0	0	0	0	1	1	1	1
CO362.2	2	2	2	2	1	1	0	0	0	1	0	0	1	1	1
CO362.3	2	2	2	1	2	2	2	2	1	1	2	1	1	1	1
CO362.4	3	3	3	3	2	2	1	1	2	1	1	1	2	2	2
CO362.5	3	2	2	2	1	1	1	1	2	1	1	1	2	2	2
CO362 (AVG)	2.4	2.2	2.2	2	1.2	1.4	1	0.8	1	0.8	0.8	0.8	1.4	1.4	1.4

Course Outcome Mapping with Program Outcome:

Course Coverage Module Wise:

Lecture	Unit	Торіс
No.		
1	1	INTRODUCTION: Objective, scope and outcome of the course
2	2	Student should be able to understand Deflection of determinate beams and frames
3	2	Student should be able to understand Deflection of determinate beams and frames
4	2	Student should be able to understand Deflection of determinate beams and frames
5	2	Student should be able to analysis of determinate and redundant frames up to 2 degree of redundancy
6	2	Student should be able to analysis of determinate and redundant frames up to 2 degree of redundancy, lack offit in redundant frames
7	2	Student should be able to understand strain energy for gradually applied, suddenly applied and impact loads
8	2	Student should be able to understand Strain energy due to axial loads, bending, shear and torsion
9	2	Student should be able to understand Castiglione's theorems & their applications in analysis of determinate & redundant frames up to 2 degree of redundancy and trussed beams
10	2	Student should be able to solve problem based on (Contd.) Castiglione's theorems & their applications
11	2	Student should be able to solve problem based on (Contd.) Castiglione's theorems & their applications
		For leuning of utzaller

Uch J Clicker Converse Dr. Pankaj Kumar Porwa (Principal)

12	2	Student should be able to solve problem based on (Contd.) Castiglione's theorems & their applications
13	2	Student should be able to understand Stresses due to temperature & lack of fit in redundant frames.
14	2	Student should be able to understand Stresses due to temperature & lack of fit in redundant frames
15	2	Student should be able to understand deflection of determinate beams, frames using energy methods
16	2	Student should be able to understand deflection of determinate beams, frames using energy methods
17	3	Student should be able to understand Influence line diagram & Rolling load: ILD for beams & frames
18	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS.
19	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS
20	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS
21	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS
22	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS
23	3	Student should be able to solve NUMERICAL based ON ILD FOR BEAMS
24	3	Student should be able to understand Muller-Breslau principle and its application for drawing ILD
25	3	Student should be able to solve problem based on (Contd.) Muller-Breslau principle
26	3	Student should be able to solve problem based on (Contd.) Muller-Breslau principle
27	3	Student should be able to solve problem based on (Contd.) Muller-Breslau principle
28	3	Student should be able to understand Maximum stress resultants in a member
29	3	Student should be able to understand Maximum stress resultants in a member
30	4	Student should be able to Analysis of three hinged parabolic Arches with supports at the same level and at different levels
31	4	Student should be able to solve problem (Contd.) Analysis of three hinged parabolic
32	4	Student should be able to solve problem (Contd.) Analysis of three hinged parabolic
33	4	Student should be able to Analysis of two hinged parabolic Arches with supports at the same level and at different levels
34	4	Student should be able to Analysis of two hinged parabolic
35	4	FStudent should be able to Analysis of two hinged parabolic.
36	4	Student should be able to Analysis of two hinged parabolic

Dr. Pankaj Kuital (Principal)

37	4	Student should be able to Analysis of fixed type parabolic Arches with supports at the same level and at different levels
38	5	Student should be able to understand Definition, location of NA
39	5	Student should be able to understand Computation of stresses and deflection
40	5	Student should be able to understand Computation of stresses and deflection
41	5	Student should be able to understand Shear center and its location.
42	5	Student should be able to understand Shear center and its location.
43	5	Student should be able to understand Shear center and its location.
44	6	Student should be able to Analysis of multistory frames by portal method
45	6	Student should be able to solve problem based on Portal Method
46	6	Student should be able to solve problem based on Portal Method
47	6	(Student should be able to solve problem based on Portal Method
48	6	Student should be able to solve problem based on Portal Method
49	6	Student should be able to solve problem based on Cantilever method & factor method
50	6	Student should be able to solve problem based on Cantilever method & factor method
51	6	Student should be able to solve problem based on Cantilever method & factor method
52	6	Student should be able to solve problem based on Cantilever method & factor method
53	6	Student should be able to Analysis of determinate space trusses by tension coefficient method
54	6	Student should be able to solve problem based on (Contd.) tension coefficient method

TEXT/REFERENCE BOOKS

- 1. Strength of Materials & Mechanics of Structures: Vol. I by Dr. B.C.Punmia Laxmi Publications (p) Ltd.
- 2. Theory of Structure by Jangid & Negi, Tata Mc Graw Hill.
- 3. Structural Analysis by Hibbler R.C., Pearsons.

For Techno India NJR Institute of Technology Gan St Cur 201 CM Dr. Pankaj Kumar Porwai (Principal)

Course Level Problems (Test Items):

CO.NO.	Problem description							
1	A. Define unsymmetrical bending B. Explain principal centroidal axes of the cross-section C. What are the differences between simple bending and unsymmetrical bending theories							
2	 A. Establish relation between principal centroidal axes and any pair of centroidal rectangular axes if angle between one principal and onr rectangular axis is α B. What are assumptions in portal method? C. What are assumptions in cantilever method? 							
3	Analyse the building frame, subjected to horizontal forces, as shown in Fig. 1. Use Portal Method / Cantilever Method. $\begin{array}{c} & & & \\ & & & \\ & & & \\ $							
4	A 60 mm x 40 mm x6 mm unequal angle is placed with the longer leg vertical and is used as a beam it is subjected to a bending moment of 12 kN- cm acting in the vertical plane through the centroid of the section determine the maximum bending stress induced in the section.							

(Principal)

Assessment Methodology:

- 1. Practical exam in lab where they have to analyze problem statement. (Once in a week)
- 2. Assignments one from each unit.
- 3. Midterm subjective paper based on topics as mentioned in the modules. (Twice during the semester)
- 4. Final paper at the end of the semester subjective

Teaching and Learning resources unit-wise:

INFLUENCE LINE DIAGRAM

Video Tutorials: <u>https://youtu.be/RyNsxkdEv00</u>

Theory concepts:

https://eng.libretexts.org/Bookshelves/Civil Engineering/Book%3A Structural Analysis (Udoeyo)/01%3 A Chapters/1.09%3A Influence Lines for Statically Determinate Structures

Sample Quiz: <u>https://testbook.com/objective-questions/mcq-on-influence-line-diagram-and-rolling-loads--5eea6a0839140f30f369d824</u>

Unsymmetrical Bending

Video Tutorials: https://youtu.be/BRYnX6UFiZY

Theory concepts: <u>https://www.ques10.com/p/25873/explain-unsymmetrical-</u> bending/#:~:text=When%20the%20plane%20of%20bending,as%20complex%20or%20biaxial%20bendin g.&text=If%20it%20does%20not%2C%20the,combined%20bending%20and%20torsion%20loading.

Sample ppt: <u>https://engineeringinterviewquestions.com/mcqs-on-bending-stress-in-unsymmetrical-sections-and-answers/</u>

Analysis of Arches

Video Tutorials: https://youtu.be/2RZKK4LhUas

Theory concepts: https://structville.com/2017/06/manual-structural-analysis-of-three-hinged-arch-	
structures.html#:~:text=The%20structural%20analysis%20e9u0%20design,to%20resist%20the%20appl	ied
%20load. For Techno India NJR Institute Traicor	
Sample Quiz: https://testbook.com/objective-giver interfective-giver i	<u>82a</u>
(Principal)	

B. Cable and Suspension

Video Tutorials: <u>https://youtu.be/jr51Ekq6bbl</u>

Theory concepts: <u>https://www.brainkart.com/article/Suspension-Cable-Structural-Analysis 4594/</u>

Sample Quiz: <u>https://testbook.com/objective-questions/mcq-on-cables-and-frames--5eea6a0839140f30f369d820</u>

A. Portal Method

Video Tutorials: https://youtu.be/ DnVJhy7Ntk

Theory concepts: https://learnaboutstructures.com/Portal-Method

Sample Quiz: https://www.sanfoundry.com/structural-analysis-guestions-answers-guiz/

B. Cantilever Method

Video Tutorials: <u>https://youtu.be/gpKb3sc3_Dw</u>

Theory concepts: https://learnaboutstructures.com/Cantilever-Method

Sample Quiz: <u>https://engineeringinterviewquestions.com/mcqs-on-lateral-loads-on-building-frames-portal-and-cantilever-method-and-answers/</u>

Previous Year Question Papers:

