Syllabus of UNDERGRADUATE DEGREE COURSE

B.Tech. V Semester

Mechanical Engineering

Rajasthan Technical University, Kota Effective from session: 2019 – 2020

Syllabus

Credit: 2 2L+0T+0P

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME3-01: MECHATRONIC SYSTEMS

Max. Marks: 100(IA: 20, ETE:80) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of Mechatronics: Historical perspective, Definition, Applications, Block diagram of Mechatronic system, Functions of Mechatronics Systems, Systems Engineering, Verification Vs Validation, Benefits of mechatronics in manufacturing.	2
	Electrical and Electronic Systems: Electrical circuits and Kirchhoff's laws, Network Theorems and AC circuit Analysis, Transformers, Analog Devices, Signal Conditioning, Digital Electronics, Data Acquisition systems.	3
3	Modeling, Analysis and Control of Physical Systems: Basics of System Modeling: LTI and LTV systems, Need for modeling, Types of modeling, Steps in modeling, Building blocks of models, Modelling of one and two degrees of freedom systems, Modeling of Electro- mechanical systems, Mechanical Systems, Fluid systems, Thermal systems; Dynamic Responses, System Transfer Functions, State Space Analysis and System Properties, Stability Analysis using Root Locus Method, Stability Analysis using Bode Plots, PID Controllers (with and without Time Delay)	5
4	Sensors and Actuators: Static characteristics of sensors and actuators, Position, Displacement and Proximity Sensors, Force and torque sensors, Pressure sensors, Flow sensors, Temperature sensors, Acceleration sensors, Level sensors, Light sensors, Smart material sensors, Micro and Nano sensors, Selection criteria for sensors, Actuators: Electrical Actuators (Solenoids, Relays, Diodes, Thyristors, Triacs, BJT, FET, DC motor, Servo motor, BLDC motor, AC motor, Stepper motors), Hydraulic and Pneumatic actuators,	7
	Design of Hydraulic and Pneumatic circuits, Piezoelectric actuators, Shape memory alloys.	
5	Microprocessors, Microcontrollers and Programmable Logic Controllers: Logic Concepts and Design, System Interfaces, Communication and Computer Networks, Fault Analysis in Mechatronic Systems, Synchronous and Asynchronous Sequential Systems, Architecture, Microcontrollers .	3
6	Programmable Logic Controllers (PLCs): Architecture, Number Systems Basics of PLC Programming, Logics, Timers and Counters, Application on real time industrial automation systems.	4
	Case Studies: Design of pick and place robot, Car engine management system, Automated manufacturing system, Automatic camera, Automatic parking system, Safety devices and systems.	3
	TOTAL	28

ZUC ZUC

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-02: HEAT TRANSFER

Credit: 3 Max. Marks: 150(IA:30, ETE: 3L+0T+0P End Term Exam: 3 H		'E:120) 3 Hours
SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Heat transfer processes, conduction and radiation. Fourier's law of heat conduction, thermal conductivity, thermal conductivity of solids, liquids and gases, effect of temperature on thermal conductivity. Newton's law of cooling, definition of overall heat transfer coefficient. General parameters influence the value of heat transfer coefficient.	4
	Conduction: General 3-Dimensoinal conduction equation in Cartesian, cylindrical and spherical coordinates; different kinds of boundary conditions; nature of differential equations; one dimensional heat conduction with and without heat generation; electrical analogy; heat conduction through composite walls; critical thickness of insulation	3
3	Heat transfer from extended surfaces: Governing differential equation of fin, fin efficiency and effectiveness for different boundary conditions.	3
	Unsteady state heat conduction for slab, cylinder and sphere, Heisler chart.	2
	Convection: Review of Navier – Stokes and energy equation, hydrodynamic and thermal boundary layers; laminar boundary layer equations; forced convection appropriate non dimensional members; effect of Prandtl number; empirical relations for flow over a flat plate and flow through pipes.	4
4	Natural convection: Dimensional analysis, Grashoff number, boundary layers in external flows (flow over a flat plate only), boundary layer equations and their solutions, heat transfer correlations.	4
	Heat transfer with change of phase: Nature of vaporization phenomena; different regimes of boiling heat transfer; correlations for saturated liquid vaporization; condensation on flat plates; correlation of experimental results, drop wise condensation.	4
5	Heat exchanger: Types of heat exchangers, arithmetic and logarithmic mean temperature differences, heat transfer coefficient for parallel, counter and cross flow type heat exchanger; effectiveness of heat exchanger, N.T.U. method, fouling factor. Constructional and manufacturing aspects of Heat Exchangers.	8
6	Thermal Radiation: Plank distribution law, Krichoff's law; radiation properties, diffuse radiations; Lambert's law. Radiation intensity, heat exchange between two black bodies heat exchanger between gray bodies. Shape factor; electrical analogy; reradiating surfaces heat transfer in presence of reradiating surfaces.	8

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-03: MANUFACTURING TECHNOLOGY

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Classification of metal removal process and machines: Geometry of single point cutting tool and tool angles, tool nomenclature in ASA, ORS. Concept of orthogonal and oblique cutting.	5
	Type of chips, Mechanics of metal cutting; interrelationships between cutting force, shear angle, strain and strain rate. Thermal aspects of machining and measurement of chip tool interface temperature.	5
3	Concept of machinability, machinability index, factors affecting machinability, Different mechanism of tool wear. Types of tool wear (crater, flank etc), Concept of tool life.	5
	Taylor's tool life equation. Introduction to economics of machining. Cutting fluids: Types, properties, selection and application methods.	5
4	Basic machine tools: Constructional configuration, estimation of machining time on lathe, drilling, shaping, milling, grinding, Gear cutting on milling, Gear hobbling.	5
	Special Purpose Machine Tools: Automatic lathes, capstan and turret lathe machines, operational planning and turret tool layout, sequence of operations.	5
5	Introduction to Grinding and different methods of grinding, Abrasives; natural and synthetic, manufacturing and selection of grinding wheels, Wheel specifications. Honing, lapping, super- finishing.	5
6	High Velocity Forming Methods: Definition; Hydraulic forming, Explosive forming, Electro-hydraulic forming, Magnetic pulse forming.	5
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-04: DESIGN OF MACHINE ELEMENTS – I

Credit: 3
3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Materials: Mechanical Properties and IS coding of various materials, Selection of material from properties and economic aspects.	3
	Manufacturing Considerations in Design: Standardization, Interchangeability, limits, fits tolerances and surface roughness, BIS codes, Design consideration for cast, forged and machined parts. Design for assembly.	4
3	Design for Strength: Modes of failure, Strength and Stiffness considerations, Allowable stresses, factor of safety, Stress concentration: causes and mitigation, fatigue failures.	4
	Design of Members subjected to direct stress: pin, cotter and keyed joints.	5
4	Design of Members in Bending: Beams, levers and laminated springs. Design for stiffness of beam: Use of maximum deflection formula for various end conditions for beam design.	7
5	Design of Members in Torsion Shaft and Keys: Design for strength, rigidity. Solid and hollow shafts. Shafts under combined loading. Sunk keys.	5
	Couplings: Design of muff coupling, flanged couplings: rigid and flexible.	3
6	Design of Threaded fasteners: Bolt of uniform strength, Preloading of bolts: Effect of initial tension and applied loads, Eccentric loading.	4
	Power screws like lead screw, screw jack.	2
	Design of members which are curved like crane hook, body of C- clamp, machine frame etc.	3
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-05: PRINCIPLES OF MANAGEMENT

Credit: 2 Max. Marks: 100(IA:20, ETE		TE:80)
2L+0T+0P End Term Exam: 2 Ho		Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic concepts of management:	
	Definition - Need and Scope - Different schools of management	2
	thought – Behavioural, Scientific, Systems, and Contingency	
	Contribution of Management Thinkers:	4
	Kautilya, Taylor, Fayol, Peter Drucker and C.K. Prahlad.	
3	Functions of Management:	
	Planning: Essentials of Planning and Managing by Objectives;	2
	Strategies, Policies and Planning Premises; Decision making.	
	Organizing	
	The Nature of organizing, Entrepreneuring, and Reengineering;	
	Organizational Structure, Departmentation; Line/staff authority,	3
	empowerment, and decentralization; Effective organizing and	
	organization culture;	
4	Staffing	
	Human resource Management and Selection; Performance Appraisal	2
	and Career Strategy; managing change through Manager and	-
	Organization Development.	
5	Leading	-
	Human Factors and Motivation; Leadership: Committees, Terms, and	3
	Group Decision making; Communication.	
	Controlling	
	The system and process of controlling; Control Techniques and	2
	Information Technology; Productivity, Operations Management and	
6	Total Quality Management.	
ю	Management practices of:	
	Bill Cotos	4
	Studying organizational structures of any 10 companies and	
	clossifying them into different types of organizations which are studied	
	classifying them into unreferring upper of organizations which are studied	2
	above and justifying why such structures are chosen by those organizations	
	Preparing the leadership profiles of any 5 business leaders and	
	studying their leadership qualities	3
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME5-11: STEAM ENGINEERING

Credit: 3Max. Marks: 150(IA:30, ETE:120)3L+0T+0PEnd Term Exam: 3 HoursSNContentsHours

SIN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Steam generators: Classification of Boilers, water and fire tube boilers, High pressure boilers, Advantages of high pressure Boilers, Natural and forced circulation boilers, Water wall.	4
	Steam drum internal, steam super heaters, Economizers, air preheater, induced, forced and balanced draught boilers, Fluidized bed boilers.	4
3	Definition and type of nozzle and diffuser equation of continuity, sonic velocity, mach no. and stagnation properties, the steady flow energy equation for nozzles, momentum energy equation for flow through steam nozzles nozzle efficiency, effect of friction, nozzle for uniform pressure drop, throat pressure for maximum discharge or chock flow, critical pressure ratio, design of nozzle and diffuser.	8
4	Steam Turbines: Principle and working of steam turbines, type of turbines, compounding for pressure and velocity. Overview and difference of various type of turbine, different types of governing of turbines.	3
	Impulse turbine: The effect of blade friction on velocity diagram. Force, work and power, Blade or diagram efficiency, Gross stage efficiency, steam speed to blade, speed ratio for optimum performance, turbine performance at various loads.	5
5	Impulse reaction turbine: Velocity diagram and work done, degree of reaction, Parson turbine, blade efficiency, gross stage efficiency comparison of enthalpy drop in various stages, size of blades in impulse reaction turbines for various stages of impulse reaction and impulse turbine.	5
	Regenerative Feed Heating Cycles: Introduction, Ideal regenerative feed heating cycle, Regenerative heating cycles and their representation on T-s and h-s Diagram, Representation of actual process on T-s and h-s Diagram Regenerative cycles, types of feed heating arrangements, Optimum feed water temperature and saving in Heat Rate. direct contact and surface heaters.	4
6	Reheating of steam: Practical reheating and Non- reheating cycles, advantage and disadvantages of reheating, reheat regenerative cycle, regenerative water extraction cycles.	4
	Process heat and by product power cycle, pass out turbine, Binary vapour cycle. Condensers.	3
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-12: AUTOMOBILE ENGINEERING

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Frame & Body: Layout of chassis, types of chassis frames and bodies, their constructional features and materials.	3
	Clutches: single plate, multi-plate, cone clutch, semi centrifugal, electromagnetic, vacuum and hydraulic clutches. Fluid coupling. Brakes: Classification and function; Mechanical, hydraulic, vacuum air and selfengineering brakes; Brake shoes and lining materials.	5
3	Gear Boxes: Sliding mesh, constant mesh, synchromesh and epicyclic gear boxes, Automatic transmission system; Hydraulic torque converter;	4
	Drives: Overdrive, Propeller shaft, Universal joints, Differential; Rear axle drives. Hotchkiss and torque tube drives; Rear axle types; Front wheel and All wheel drive.	4
4	Wheels and Tyres: Tyre types, Tyre construction; Tyre inflation pressure, Tyre wear and their causes; Re-treading of the tyre,	2
	Steering system: steering gear boxes, Steering linkages, Steering mechanism, Under and Over steering. Steering Geometry, Effect of camber, caster, king pin inclination, toe in and toe out; Power steering; Integral and linkage types.	3
	Suspension system: objective and requirements, Suspension spring, front and rear suspension systems, Independent suspension system Shock absorbers.	3
5	Automotive Electrical System: Battery construction, Charging and testing, battery types, Starting and Battery Charging System: Starter motor construction, types of drive, Alternator construction, regulation and rectification.	4
	Ignition System: Magneto and coil ignition systems, System components and requirements, Automotive lighting: Wiring systems Electrical instruments; head lamp, electric horn, fuel level indicator.	4
6	Automotive Air Conditioning: Introduction, Loads, Air conditioning system Components, Refrigerants, Fault Diagnosis.	4
	Automotive Safety: Safety requirements, Safety Devices, Air bags, belts, radio ranging, NVS (Night Vision System) GPS (Global Positioning System)	4
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME5-13: NON DESTRUCTIVE EVALUATION AND TESTING

Cred	lit: 3 Max. Marks: 150(IA:30, ET	E:120)
3L+0	DT+OP End Term Exam: 3	B Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	ACOUSTICAL METHODS: Ultrasonic testing- Generation of ultrasonic waves, Horizontal and shear waves, Near field and far field acoustic wave description, Ultrasonic probes- Straight beam, direct contact type, Angle beam, Transmission/reflection type, and delay line transducers, acoustic coupling and media.	5
	ULTRASONIC TESTS: Transmission and pulse echo methods, A-scan, B-scan, C-scan, F- scan and P-scan modes, Flaw sizing in ultrasonic inspection: AVG, Amplitude, Transmission, TOFD, Satellite pulse, Multi-modal transducer, zonal method using focused beam. Flow location methods, Signal processing in Ultrasonic NDT; Mimics, spurious echo's and noise. Ultrasonic flaw evaluation.	5
3	ELECTRO-MAGNETIC METHODS - magnetic particle inspection- introduction to electrical impedance, principles of eddy current testing, flaw detection using eddy currents.	6
4	RADIOGRAPHIC METHODS : Introduction to x-ray radiography, the radiographic process, X-ray and Gamma ray sources, Geometric principles, Factors governing exposure, radio graphic screens, scattered radiation, arithmetic of exposure, radiographic image quality and detail visibility, industrial X-ray films.	6
	X-RAY RADIOGRAPHY PROCESES: Fundamentals of processing techniques, process control, the processing room, special processing techniques, paper radiography, sensitometric characteristics of X-ray films, film graininess signal to noise ratio in radiographs. The photographic latent image, radiation protection.	6
5	OPTICAL METHODS : holography- Principles and practices of Optical holography, acoustical, microwave, x-ray and electron beam holography techniques.	6
6	APPLICATIONS: NDT in flaw analysis of Pressure vessels, piping NDT in Castings, Welded constructions, etc., Case studies.	6
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME3-21: MECHATRONICS LAB.

Cree	lit: 1 Max. Marks: 50(IA:30, ETE:20)
OL +	0T+2P End Term Exam: 2 Hours
SN	NAME OF EXPERIMENT
1	Using Transducers Kit :-
	Characteristics of LVDT
	Principle & Characteristics of Strain Gauge
	Characteristics of Summing Amplifier
	Characteristics of Reflective Opto Transducer
2	Mobile Robot
	Program for Operating Buzzer Beep
	Program for Operating Motion control
	Program for Operating Direction control
	 Program for Operating White line follower for the given arena
З	PLC PROGRAMMING
	Ladder programming on Logic gates ,Timers & counters
	 Ladder Programming for digital & Analogy sensors
	• Ladder programming for Traffic Light control, Water level control and
	Lift control Modules
4	MATLAB Programming
	Sample programmes on Mat lab
	 Simulation and analysis of PID controller using SIMULINK
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation of sessional component shall include 30%
	weight age to mini project.
	• Mini project can be integration of sensor, actuator and
	transduction units for various home and office applications.

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-22: HEAT TRANSFER LAB.

Credit: 1 Max. Marks: 50(IA:30, ETE:20 0L+0T+2P End Term Exam: 2 Hours	
SN	NAME OF EXPERIMENT
1	To Determine Thermal Conductivity of Insulating Powders.
2	To Determine Thermal Conductivity of a Good Conductor of Heat (Metal Rod).
3	To determine the transfer Rate and Temperature Distribution for a Pin Fin.
4	To Measure the Emissivity of the Test plate Surface.
5	To Determine Stefan Boltzmann Constant of Radiation Heat Transfer.
6	To Determine the Surface Heat Transfer Coefficient For Heated Vertical Cylinder
U	in Natural Convection.
7	Determination of Heat Transfer Coefficient in Drop Wise and Film
	Wise condensation.
8	To Determine Critical Heat Flux in Saturated Pool Boiling.
9	To Study and Compare LMTD and Effectiveness in Parallel and Counter Flow
	Heat Exchangers.
10	To Find the Heat transfer Coefficient in Forced Convection in a tube.
11	To study the rates of heat transfer for different materials and geometries
12	To understand the importance and validity of engineering assumptions through
	the lumped heat capacity method.
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation sessional component shall include 30%
	weight age to mini project.
	• Heat exchanger design for different applications, designing for thermal insulation, Use of relevant BIS codes for designing.

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-23: PRODUCTION ENGINEERING LAB.

Credit: 1 Max. Marks: 50(IA:30, ETE:20) **0L+0T+2P** End Term Exam: 2 Hours NAME OF EXPERIMENT SN Study of various measuring tools like dial gauge, micrometer, vernier caliper 1 and telescopic gauges. Measurement of angle and width of a V-groove by using bevel protector.. 2 (a) To measure a gap by using slip gauges (b) To compare & access the method of small-bore measurement with the aid З of spheres. Measurement of angle by using sine bar. 4 (a) Measurement of gear tooth thickness by using gear tooth vernier caliper. 5 (b) To check accuracy of gear profile with the help of profile projector. To determine the effective diameter of external thread by using three- wire 6 method. 7 To measure flatness and surface defects in the given test piece with the help of monochromatic check light and optical flat. 8 To check the accuracy of a ground, machined and lapped surface - (a) Flat surface (b) Cylindrical surface. 9 Find out Chip reduction co-efficient (reciprocal of chip thickness ratio) during single point turning. **10** Forces measurements during orthogonal turning. **11** Torque and Thrust measurement during drilling. **12** Forces measurement during plain milling operation. Measurement of Chip tool Interface temperature during turning using 13 thermocouple technique. Important Note: It is mandatory for every student to undertake a Mini project. Mini project shall be a group activity. A group shall consist of maximum five students. Final evaluation shall include 30% weight age to mini project. • Fabrication of an assembly in which parts shall be machined and standard parts shall be procured.

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-24: MACHINE DESIGN PRACTICE - I

Credit: 1 Max. Marks: 50(IA:30, ETE:20)	
OL+0T+2P End Term Exam: 2 Hour	
SN	Sessional Work
1	Material selection and relevant BIS nomenclature
2	Selecting fit and assigning tolerances
3	Examples of Production considerations
4	Problems on:
	(a) Knuckle & Cotter joints
	(b) Torque: Keyed joints and shaft couplings
	(c) Design of screw fastening
	(d) Bending: Beams, Levers etc.
	(e) Combined stresses: Shafts, brackets, eccentric loading.
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation shall include 30% weight age to mini project.
	• Design and analysis of simple mechanical systems/products

Syllabus of UNDERGRADUATE DEGREE COURSE

B.Tech. VI Semester

Mechanical Engineering

Rajasthan Technical University, Kota Effective from session: 2019 – 2020

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME3-01: MEASUREMENT and METROLOGY

Credit: 2	
2L+0T+0P	

Max. Marks: 100(IA:20, ETE:80) End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Concept of measurement: General concept of measurement, Need for measurement, Generalized measuring system, Units, Standards, Sensitivity, Readability, Range of accuracy, Precision, Accuracy Vs precision, Uncertainty.	3
	Repeatability and reproducibility, Errors in measurement, Types of error, Systematic and random error, Calibration, Interchangeability.	3
3	Linear and angular measurements: Linear measuring instruments: Vernier caliper, Micrometer, Interval measurements:- Slip gauges, Checking of slip gauges for surface quality, Optical flat, Application of limit gauges	3
	Comparators:- Mechanical comparators, Electrical comparator, Optical comparator, Pneumatic comparator;	2
	Sine bar, Use of sine bar, Limitations of sine bars, Sources of error in sine bars, Bevel protractor, Applications of bevel protractor.	3
4	Form measurement: Introduction, Screw thread measurement, Thread gauges, Measurement of gears: Gear errors.	2
	Surface finish measurement:-Introduction, Elements of surface texture, Analysis of surface finish, Methods of measuring surface finish, Straightness measurement, Flatness testing, Roundness measurements	3
5	Coordinate measuring machine (CMM):-Types of CMM, Features of CMM, Computer based inspection,	2
	Measurement of power, flow and temperature related properties Measurement of force, Accelerometer, Load cells, Bourdon tube. Torque measurement: Torque measurement using strain gauges, Torque measurement using torsion bars, Mechanical dynamometers.	3
6	Measurement of flow: Variable area meters – rotameter, Hot wire anemometer, Pitot tube. Temperature measurement, Bimetallic strip, Thermocouples	3
	(Thermo electric effects), Thermistors, Pyrometers	
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-02: COMPUTER INTEGRATED MANUFACTURING SYSTEMS (CIMS)

Credit: 3	Max. Marks: 150	(IA:30, ETE:120)
3L+0T+0P	End Te	rm Exam: 3 Hours
SN	Contents	Hours

2 N	Contents	nours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to CIM: Overview of Production Systems, the product	
	cycle, Automation in Production Systems, computer's role in	2
	manufacturing, sources and types of data used in manufacturing.	4
	The Beginning of CAM: Historical Background,	
	Numerical Control (NC): Basic components of an NC system,	
	coordinate system and motions control systems. Computer	
	Numerical Control (CNC): features of CNC, machine control unit,	3
	CNC software. Direct Numerical Control and Distributed	Ū
	Numerical Control. Applications, advantages and disadvantages of	
	NC. Adaptive control of machining system.	
3	NC Part programming: Manual and computer assisted part	
	programming, Part programming with APT. NC part programming	8
	using CAD/CAM software. NC cutter path verification.	
4	Computer Aided Process Planning: Traditional Process Planning,	
	Retrieval process planning system, Generative Process Planning,	4
	Machinability data systems, computer generated time standards.	
	Group Technology: Introduction, part families, part classification	4
	and coding, coding system and machining cells.	•
5	Computer Aided Production Management Systems: Introduction to	
	computer aided PPC, Introduction to computer aided inventory	6
	management, manufacturing resource planning (MRPII), computer	•
	process monitoring and shop floor control, computer process control.	
	Computer Aided Quality Control; Computer in quality control,	-
	contact inspection methods, Non contact inspection methods,	3
	optical and non optical computer aided testing.	
6	Computer Aided Material Handling; Computer control on material	-
	handling, conveying, picking. Ware house control, computerized	3
	material handling for automated inspection and assembly.	
	Computer Integrated Manufacturing Systems: Introduction, types	_
	special manufacturing systems, flexible manufacturing systems	5
	(FMS).	
	Collaborative Engineering; Introduction, Faster Design throughput,	•
	Web based design, Changing design approaches, extended	3
	enterprises, concurrent engineering, Agile and lean manufacturing.	4 1
	TOTAL	41

Credit: 3

3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-03: MECHANICAL VIBRATIONS

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Sound: Frequency dependent human response to sound, Sound pressure dependent human response, Relationship among sound power, sound intensity and sound pressure level.	2
	Introduction to Noise: Auditory and Non auditory effects of Noise, Major sources of the noise, Industrial noise sources, Industrial noise control strategies.	3
	Introduction to Vibration: Importance and scope of vibrations, terminology and classification, Concept of Degrees of freedom, Harmonic motion, vectorial representation, complex number representation, addition.	3
3	Undamped Single Degree of Freedom System: Derivation of equation of motion for one dimensional longitudinal, transverse and torsional vibrations without damping using Newton's second law, D' Alembert's principle and Principle of conservation of energy, Compound pendulum and centre of percussion.	3
	Damped vibrations of single degree of freedom systems: Viscous damping, under-damped, critically damped and over-damped systems, Logarithmic decrement.	3
	Vibration characteristics of Coulomb damped system and Vibration characteristics of Hysteretic damped systems.	2
3	Forced Vibrations of Single Degree of Freedom Systems: Forced vibration with constant harmonic excitation, Steady state and transient parts, Frequency response curves and phase angle plot, Forced vibration due to excitation of support.	4
	Vibration Isolation and Transmissibility: Force transmissibility, Motion transmissibility, Forced vibration with rotating and reciprocating unbalance, Materials used in vibration isolation.	4
5	System with Two Degrees of Freedom: principle mode of vibration, Mode shapes, Undamped forced vibrations of two degrees of freedom system with harmonic excitation, Vibration Absorber, Undamped dynamic vibration absorber and centrifugal pendulum absorber	5
	Critical Speed of Shaft: Critical speed of a light shaft without damping, critical speed of shaft having multiple discs, secondary critical speed.	3
6	Many Degrees of Freedom Systems (Exact analysis): Equation of Motion, The matrix method, Eigen Values and Eigen Vectors, Method of influence Coefficients and Maxwell's reciprocal theorem. Torsional vibrations of multi rotor system, vibrations of geared system, Generalized coordinates and coordinate coupling Many Degrees of Freedom Systems (approximate methods): Rayleigh's, Dunkerley's, Stodola's and Holzer's methods	5
	Vibrations of continuous systems: Transverse vibration of a	3
	string, Longitudinal vibration of a bar, forsional vibration of a shaft. TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-04: DESIGN OF MACHINE ELEMENTS- II

Credit: 3 Max. Marks: 150(IA:30, ETF		`E:120)
3L+0T+0P End Term Exam: 3		3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses, Influence of size, surface finish, notch sensitivity and stress concentration.	3
	Goodman line, Soderberg line, Design of machine members subjected to combined, steady and alternating stresses.	3
	Design for finite life, Design of Shafts under Variable Stresses, Bolts subjected to variable stresses.	2
3	Design of IC Engine components: Piston, Cylinder, Connecting Rod and Crank Shaft.	8
4	Design of helical compression, tension, torsional springs, springs under variable stresses.	4
	Design of belt, rope and pulley drive system,	4
5	Design of gear teeth: Lewis and Buckingham equations, wear and dynamic load considerations.	4
	Design and force analysis of spur, helical, bevel and worm gears, Bearing reactions due to gear tooth forces.	4
6	Design of Sliding and Journal Bearing: Methods of lubrication, hydrodynamic, hydrostatic, boundary etc. Minimum film thickness and thermal equilibrium.	4

Selection of anti-friction bearings for different loads and load

cycles, Mounting of the bearings, Method of lubrication.

4

41

TOTAL

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-05: QUALITY MANAGEMENT

Max. Marks: 150(IA:30, ETE:120)

<u>3L+0</u>	T+OP End Term Exam: 3	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	The meaning of Quality and quality improvement dimensions of quality, history of quality methodology, quality control, Quality of design and quality of conformance, Quality policy and objectives, Economics of quality.	5
	Modeling process quality: Describing variation, frequency distribution, continuous and discrete, probability distributions, pattern of variation, Inferences about process quality: sampling distributions and estimation of process parameters. Analysis of variance.	4
3	Statistical Quality Control: Concept of SQC, Chance and assignable causes of variation, statistical basis of control chart, basic principles, choice of control limits, sample size and sampling frequency, analysis of patterns on control charts. The magnificent seven.	4
	Control chart for variables,: X-bar and R charts, X-bar and S charts, control chart for individual measurement. Application of variable control charts.	4
4	Control chart for attributes: control chart for fraction non conforming P- chart, np-chart, c-chart and u-chart. Demerit systems, choice between attribute and variable control chart. SPC for short production runs. Process capability analysis using histogram and probability plot, capability ratios and concept of six sigma.	7
5	Quality Assurance: Concept, advantages, field complaints, quality rating, quality audit.	2
	Acceptance Sampling: Fundamental concepts in acceptance sampling, operating characteristics curve. Acceptance sampling plans, single, double and multiple sampling plans, LTPD, AOQL, AOQ.	4
	Introduction to Quality systems like ISO 9000 and ISO 14000.	2
6	Reliability and Life Testing- Failure models of components, definition of reliability, MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in simple cases of exponential failures in series, paralleled and series-parallel device configurations, Redundancy and improvement factors evaluations. Introduction to Availability and Maintainability	4
	Introduction to Taguchi Method of Design of Experiments, Quality	4
		41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-11: REFRIGERATION AND AIR CONDITIONING

Credit: 3 Max. Marks: 150(IA:30, ETE: 1		`E:120)
3L+0T+0P End Term Exam: 3 H		
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Refrigeration and second law of Thermodynamics, Refrigeration effect and unit of Refrigeration, Heat pump, reversed Carnot cycle. Vapour Compression Refrigeration System: Analysis of simple vapour compression Refrigeration cycle by p-h and T-S diagram. Effect of operating conditions	5
	Multiple Evaporator and compressor system: Application, air compressor system, Individual compressor, compound compression, cascade system. Application, air compressor systems, individual compressor, compound compression, cascade system.	3
3	Gas Cycle Refrigeration: Limitation of Carnot cycle with gas, reversed Brayton cycle, Brayton cycle with regenerative heat exchanger.	4
	Air cycle for air craft: Necessity of cooling of air craft, Basic cycle, boot strap, regenerative type air craft refrigeration cycle.	4
4	Other refrigeration systems (description only): Vapour absorption refrigeration system, Electrolux refrigerator, Lithium Bromide - Water system, Water vapour refrigeration system, Vortex tube refrigeration system, thermo electric refrigeration system.	4
	Refrigerants: Classification, Nomenclature, selection of Refrigerants, global warming potential of CFC Refrigerants. Refrigeration Equipments: Compressor, condenser, evaporator, expansion devices, types & working.	4
5	Psychrometry: Psychrometric properties, psychometric relations, pyschrormetric charts, psychrometric processes, cooling coils, Bypass factor, Apparatus Dew point temperature and air washers.	5
	Human Comfort: Mechanism of body heat losses, factors affecting human comfort, effective temperature, comfort chart.	3
6	Cooling load calculations: Internal heat gain, system heat gain, RSHF, ERSHF, GSHF, cooling load estimation, heating load estimation, psychrometric calculation for cooling.	5
	Selection of air conditioning: Apparatus for cooling and dehumidification, Air conditioning system, year round air conditioning.	3
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-12: NON CONVENTIONAL MACHINING METHODS

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction and classification of advanced machining process, consideration in process selection, difference between traditional and non-traditional process, Hybrid process.	4
	Abrasive finishing processes: AFM, MAF (for Plain and cylindrical surfaces).	4
3	Mechanical advanced machining process: Introduction, Mechanics of metal removal, process principle, Advantages, disadvantages and applications of AJM, USM, WJC.	6
4	Thermo electric advanced machining process: Introduction, Principle, process parameters, advantages, disadvantages and applications about EDM, EDG,	4
	LBM, PAM, EBM	6
5	Electrochemical and chemical advanced machining process: ECM, ECG, ESD, Chemical machining,	6
	Anode shape prediction and tool design for ECM process. Tool (cathode) design for ECM Process.	4
6	Introduction to Micro and nanomachining,	5
	TOTAL	40

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-13: MICRO ELECTRO AND MECHANICAL SYSTEMS (MEMS) and MICROSYSTEMS

	it: 3 Max. Marks: 150(IA:30, E' T+0P Find Term Fram:	re:120)
SN	Contents	Hours
1	Introduction: Objective scope and outcome of the course	1
2	Over view of MEMS and Microsystems: Microelectromechanical Systems (MEMS) and Microsystems, Typical MEMS and Microsystem products, Evaluation of Microfabrication, Microsystem and microelectronics, the multidisciplinary nature of microsystem design and manufacture, Microsystems and miniaturization, Application of Microsystems in the automotive industry, applications of Microsystems in other industries.	2
	Microactuation, MEMS with Microactuators, Microaccelerometers, Microfluidics.	3
3	Engineering Science for Microsystem Design and Fabrication: Introduction, atomic structure of matter, ions and ionization, moleculat theory of matter and intermolecular forces, doping of semiconductors, the diffusion process, plasma physics, electrochemistry, quantum physics.	4
	Engineering Mechanics for Microsystem design: Introduction, static bending of thin plates, mechanical vibration, thermomechanics, fracture mechanics, thin-film mechanics, overview of finite element stress analysis.	4
4	Thermofluid Engineering and Microsystem design: Introduction, overview of the basics of fluid mechanics in Macro and mesoscales, Basic equations in continuum fluid dynamics, laminar fluid flow in circular conduits, computational fluid dynamics, Incompressible fluid flow in microconduits, fluid flow in submicrometer and nanoscale, overview of heat conduction in solids, heat conduction in multilayered thin films, heat conduction in solids in submicrometer scale.	5
	Scaling laws in Miniaurization: Introduction to scaling, scaling in geometry, scaling in rigid-body dynamics, scaling in electrostatic forces, scaling in electromagnetic forces, scaling in electricity, scaling in fluid mechanics, scaling in heat transfer.	5
5	Materials for MEMS and Microsystems: Introduction, substrate and wafers, active substrate materials, silicon as a substrate material, silicon compounds, silicon piezoresistors, gallium arsenide, quartz, piezoelectric crystals, polymers, packaging materials.	5
	Microsystem Fabrication Processes: Introduction, Photolithography, Ion implantation, diffusion, oxidation, chemical vapor deposition, physical vapor deposition- sputtering, deposition by epitaxy, etching.	6
6	Overview of Micromanufacturing: Introduction, bulk micromanufacturing, surface micromachining, LIGA.	3
	mechanical design, mechanical design using finite element method, design of a silicon die for a micropressure sensor, design of microfluidic network systems, design case: capillary electrophoresis network system.	3
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-21: CIMS LAB.

Crea	lit: 1.5 Max. Marks: 75(IA:45, ETE:30)
OL +(0T+3P End Term Exam: 3 Hours
SN	NAME OF EXPERIMENT
1	To prepare part programming for plain turning operation.
2	To prepare part program for turning operations using turning cycle.
3	To prepare part program for threading operation.
4	To prepare part program for gear cutting using mill cycle.
5	To prepare part program for multiple drilling in X and Z axis using drilling cycle.
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation shall include 30% weight age to mini project.
	• Engraving of students' name, manufacturing of a part.

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-22: VIBRATION LAB.

Cree	lit: 1.5 Max. Marks: 75(IA:45, ETE:30)
OL+	DT+3P End Term Exam: 3 Hours
SN	
1	To verify relation $T = 2\pi$ (I/g) for a simple pendulum.
2	To determine radius of gyration of compound pendulum.
3	To determine the radius of gyration of given bar by using bifilar suspension.
4	To determine natural frequency of a spring mass system.
5	Equivalent spring mass system.
6	To determine natural frequency of free torsional vibrations of single rotor system.
	i. Horizontal rotor
	ii. Vertical rotor
7	To verify the Dunkerley's rule.
8	Performing the experiment to find out damping co-efficient in case of free
	damped torsional vibration
9	To conduct experiment of trifler suspension.
10	Harmonic excitation of cantilever beam using electro-dynamic shaker and
	determination of resonant frequencies.
11	Study of Vibration measuring instruments.
12	Perform study of the following using Virtual Lab http://www.vlab.co.in/
13	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End: To
	calculate the natural freq and damping ratio for forced vibration of a single
	DOF cantilever beam system, experimentally; and compare the results with
	theoretical values.
14	Harmonicaly Excited Forced Vibration of a Single DOF System: To analyze the
	forced vibration response of a single DOF system at diff damping ratio and
	frequency ratio.
15	Perform study of the following using Virtual Lab http://www.vlab.co.in/
16	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End: To
	calculate the natural freq and damping ratio for forced vibration of a single
	DOF cantilever beam system, experimentally; and compare the results with
	theoretical values.
17	Harmonicaly Excited Forced Vibration of a Single DOF System: To analyze the
	forced vibration response of a single DOF system at diff damping ratio and
	irequency ratio.
	Important Note:
	It is manuatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	Students. Final evaluation shall include 30% weight age to mini project.
	• Design of vibration system, measurement of vibration, FFT analysis using
	MAILAB

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-23: MACHINE DESIGN PRACTICE - II

Crec	lit: 1.5 Max. Marks: 75(IA:45, ETE:30)
UL+UT+3P End Term Exam: 3 Hours	
SN	SESSIONAL WORK
	Problems on:
	Use data hand book by Mahadevan and Reddy
1	Fatigue loading.
2	Helical compression, tension and torsional springs design.
3	Curved Beams.
4	Preloaded bolts and bolts subjected to variable stresses.
5	Belt, Rope and Chain drive system.
6	Gear Design.
7	Sliding contact bearing design.
8	Anti-friction bearing selection
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation shall include 30% weight age to mini project.
	 Design of assembly (mechanical systems) using various BIS codes/data book

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-24: THERMAL ENGINEERING LAB-1

Cred	lit: 1.5 Max. Marks: 75(IA:45, ETE:30)
OL+OT+3P End Term Exam: 3 Hou	
SN	Name Of Experiment
1	Study of working of four stroke petrol engine and four stroke diesel engine with the help of cut section models
2	Study of working of two stroke petrol and two stroke diesel engine with the help of cut section models.
3	To draw valve timing diagram for a single cylinder diesel engine.
4	Study of various types of boilers.
5	Study of various types of mountings and accessories.
6	Demonstration of steering system and measurement of steering geometry angles and their impact on vehicle performance.
7	Study of braking system with specific reference to types of braking system, master cylinder, brake shoes.
8	Study of transmission system including clutches, gear box assembly and differential box
	Important Note:
	 Study also includes Assembly and disassembly of above systems
	• It is mandatory for every student to present a term paper. Term
	paper shall be a group activity. A group shall consist of maximum
	two students. Final evaluation shall include 30% weight age to
	term paper. Term paper shall cover study or survey of new
	technologies in above systems.
	technologies in above systems.