∞
4
7
H
田
3

Roll No.

Total No of Pages: 3

3E1148

B. Tech. III - Sem. (Main) Exam., Dec. - 2018 PCC Electronics & Communication Engineering 3EC4 - 05 Signal & Systems EČ, EI

Time: 3 Hours

Maximum Marks: 120

Instructions to Candidates:

Attempt all ten questions from Part A, selecting five questions from Part B and four questions from Part C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used /calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

Calculator

20

PART – A

(Answer should be given up to 25 words only)

[10×2=20]

All questions are compulsory

Q.1 Check whether the signal $x(n) = (-0.5)^n$ u(n) is energy signal, power signal or neither. [2]

Q.2 Find period of signal $x(t) = \exp(j(\frac{\pi}{2}t - 1))$ [2]

Q.3 The impulse response of discrete LTI system is given by $h(n) = \left(\frac{1}{2}\right)^n u(n)$. Let y(n) be

the output of system with input $x(n) = 2 \delta(n) + \delta(n-3)$. Find y[1] and y[4]. [2]

(Where u(n) is unit step signal and $\delta(n)$ is unit impulse signal)

[1700]

Q.6	Obtain	the	Fourier	transform	of-
-----	--------	-----	---------	-----------	-----

(a)
$$\frac{1}{a^2+t^2}$$

(b)
$$e^{-at} u(t)$$
 [4]

Q.7 Differentiate between real and flat top sampling. [8]

PART - C

[4×15=60] (Descriptive/Analytical/Problem Solving/Design Question) Attempt any four questions

$$\frac{Attempt uter root questions}{(t-3), h(t) = u(t) - u(t-2)}$$

Q.1 If
$$x(t) = u(t) - u(t-3)$$
, $h(t) = u(t) - u(t-2)$

Find y(t) = x(t) * h(t); here * = convolution٩

The response $y(t) = 2 e^{-3t} u(t)$ if input x(t) = u(t) to a continuous time LTI system [15]

Find impulse response of system

Find output y(t) if input is changed to $x(t) = e^{-t} u(t)$

[15] Q.3 Find the inverse z - transform of following

(a) $X(z) = \frac{z}{2z^2 - 3z + 1}$ $|z| < \frac{1}{2}$ (b) $X(z) = \frac{z}{2z^2 - 3z + 1}$ |z| > 1

(b)
$$X(z) = \frac{z}{2z^2 - 3z + 1}$$
 $|z| > 1$

[15] Q.4 Explain properties of continuous time fourier transform (CTFT).

Q.5 State the sampling theorem for low pass signals. Proof that there is loss of information due to aliasing or undersampling.