1 Introduction

Recommended Problems

P1	.1		

Evaluate each of the following expressions for the complex number $z = \frac{1}{2}e^{j\pi/4}$.

- (a) $Re\{z\}$
- **(b)** $Im\{z\}$
- (c) |z|
- (d) *∢z*
- (e) z^* (* denotes complex conjugation)
- (f) $z + z^*$

P1.2)

Let z be an arbitrary complex number.

(a) Show that

$$Re\{z\} = \frac{z + z^*}{2}$$

(b) Show that

$$jIm\{z\} = \frac{z-z^*}{2}$$

P1.3

Using Euler's formula, $e^{j\theta} = \cos \theta + j \sin \theta$, derive the following relations:

- (a) $\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$
- **(b)** $\sin \theta = \frac{e^{j\theta} e^{-j\theta}}{2j}$

P1.4

- (a) Let $z = re^{i\theta}$. Express in polar form (i.e., determine the magnitude and angle for) the following functions of z:
 - (i) a
 - (ii) z^2
 - (iii) *jz*
 - (iv) zz*
 - $(v) \frac{z}{z^4}$
 - (vi) $\frac{1}{z}$

(b) Plot in the complex plane the vectors corresponding to your answers to Problem P1.4a(i)–(vi) for $r = \frac{2}{3}$, $\theta = \pi/6$.

P1.5

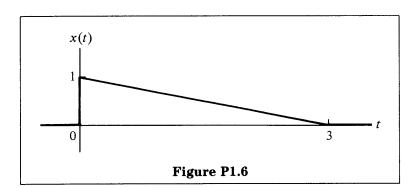
Show that

$$(1 - e^{j\alpha}) = 2\sin\left(\frac{\alpha}{2}\right)e^{j[(\alpha - \tau)/2]}$$

P1.6

For x(t) indicated in Figure P1.6, sketch the following:

- (a) x(-t)
- **(b)** x(t+2)
- (c) x(2t+2)
- (d) x(1-3t)



P1.7

Evaluate the following definite integrals:

$$(a) \int_0^a e^{-2t} dt$$

(b)
$$\int_2^\infty e^{-3t} dt$$