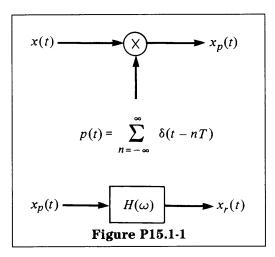
15 Discrete-Time Modulation

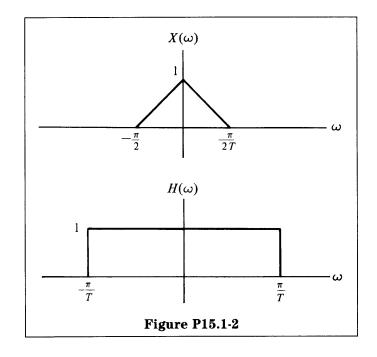
Recommended Problems

P15.1

In the system shown in Figure P15.1-1, x(t) is used to modulate an impulse train carrier. The signal $x_p(t)$ then corresponds to an impulse train of samples of x(t). Under appropriate conditions, x(t) can be recovered from $x_p(t)$ with an ideal low-pass filter.

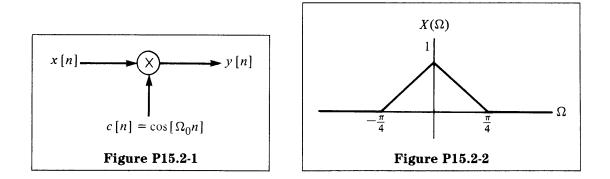


For $X(\omega)$ and $H(\omega)$ as indicated in Figure P15.1-2, sketch $X_p(\omega)$ and $X_r(\omega)$. Indicate specifically whether in this case $x_r(t)$ is equal to (or proportional to) x(t).



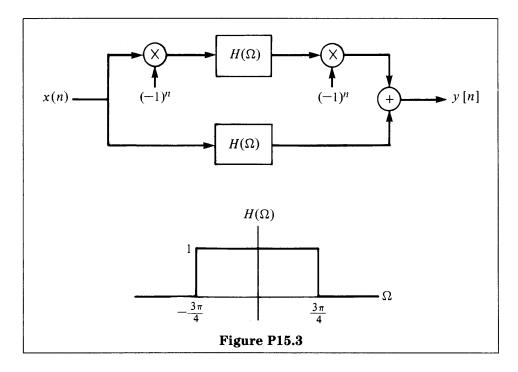
<u>P15.2</u>

Consider the discrete-time modulation system in Figure P15.2-1. Let $X(\Omega)$ be given as in Figure P15.2-2. Sketch $Y(\Omega)$ for $\Omega_0 = \pi/2$ and for $\Omega_0 = \pi/4$.



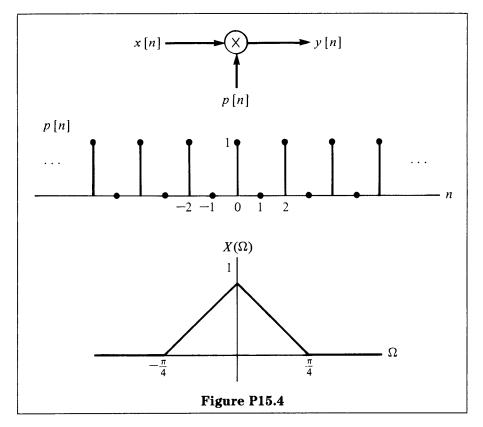
P15.3

The system in Figure P15.3 is equivalent to a linear, time-invariant system with frequency response $G(\Omega)$. Determine and sketch $G(\Omega)$.



<u>P15.4</u>

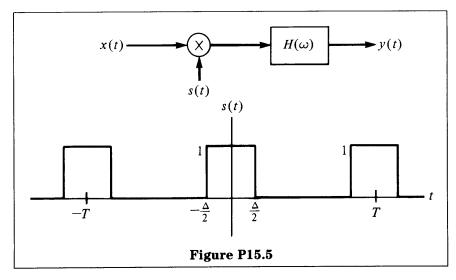
A discrete-time pulse amplitude modulation system is shown in Figure P15.4, where p[n] and $X(\Omega)$ are as indicated.



- (a) Sketch $P(\Omega)$ and $Y(\Omega)$.
- (b) Describe a system to recover x[n] from y[n].
- (c) Discuss how this system could be used to time-division-multiplex two signals $x_1[n]$ and $x_2[n]$.

P15.5

In the system in Figure P15.5, s(t) is a rectangular pulse train as indicated.

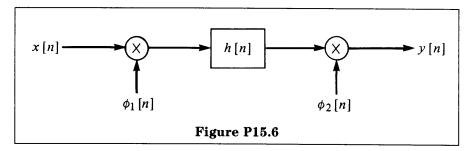


Determine $H(\omega)$ so that y(t) = x(t), assuming that no aliasing has occurred.

Optional Problems

P15.6

Consider the discrete-time system shown in Figure P15.6. The input sequence x[n] is multiplied by $\phi_1[n]$, and the product is taken as the input to an LTI system. The final output y[n] is then obtained as the product of the output of the LTI system multiplied by $\phi_2[n]$.



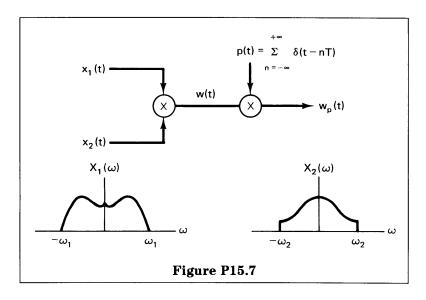
- (a) In general, is the overall system linear? Is it time-invariant? (Consider, for example, $\phi_1 = \delta[n]$).
- (b) If $\phi_1[n] = z^{-n}$ and $\phi_2[n] = z^n$, where z is any complex number, show that the overall system is time-invariant.

P15.7

In the system in Figure P15.7, two time functions $x_1(t)$ and $x_2(t)$ are multiplied, and the product w(t) is sampled by a periodic impulse train. $x_1(t)$ is bandlimited to ω_1 , and $x_2(t)$ is bandlimited to ω_2 :

$$egin{array}{lll} X_1(\omega) &= 0, & |\omega| > \omega_1, \ X_2(\omega) &= 0, & |\omega| > \omega_2 \end{array}$$

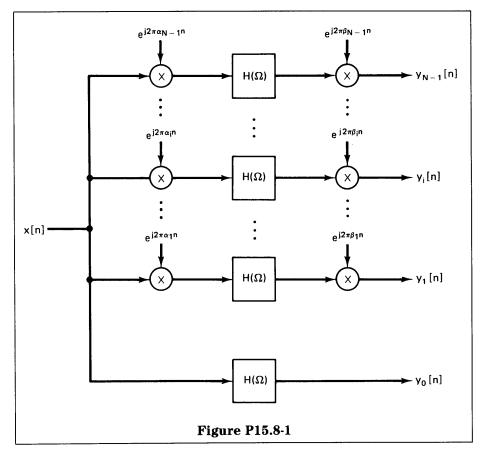
Determine the maximum sampling interval T such that w(t) is recoverable from $w_p(t)$ through the use of an ideal lowpass filter.



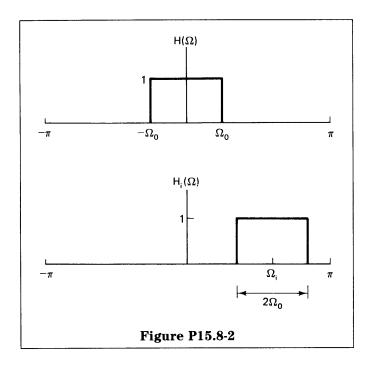
<u>P15.8</u>

A discrete-time filter bank is to be implemented by using a basic lowpass filter and appropriate complex exponential amplitude modulation as indicated in Figure P15.8-1.

(a) With $H(\Omega)$ an ideal lowpass filter, as shown in Figure P15.8-2, the *i*th channel of the filter bank is to be equivalent to a bandpass filter with frequency response shown in Figure P15.8-2. Determine the values of α_i and β_i to accomplish this.

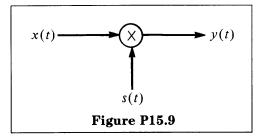


(b) Again with $H(\Omega)$ as in Figure P15.8-2 and with $\Omega_i = 2\pi i/N$, determine the value of Ω_0 in terms of N so that the filter bank covers the entire frequency band without any overlap.



P15.9

Consider the modulation system in Figure P15.9.

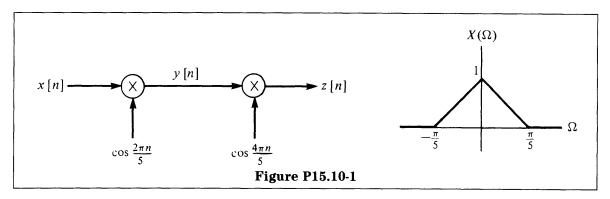


Suppose we know that $X(\omega)$ is bandlimited to $\pm \omega_c$ and that s(t) is an *arbitrary* periodic function with period *T*.

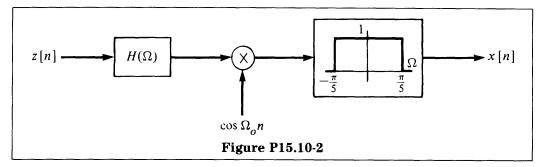
- (a) Draw a possible Fourier transform of s(t). Consider the case when $S(\omega)|_{\omega=0}$ is zero and the case when it is not zero.
- (b) What is the range of T such that $Y(\omega)$ will have regions equal to zero?
- (c) For a typical value of T found in part (b), determine how to recover x(t) from y(t).

P15.10

Consider the modulation system in Figure P15.10-1.



- (a) Sketch $Y(\Omega)$.
- **(b)** Sketch $Z(\Omega)$.
- (c) Suppose that we want to recover x[n] from z[n] using the system in Figure P15.10-2.



Determine two distinct combinations of $H(\Omega)$ and Ω_0 that will recover x[n] from z[n].