9 Fourier Transform Properties

Recommended Problems

P9.1

Determine the Fourier transform of $x(t) = e^{-t/2}u(t)$ and sketch

- (a) $|X(\omega)|$
- **(b)** $\triangleleft X(\omega)$
- (c) $Re{X(\omega)}$
- (d) $Im{X(\omega)}$

P9.2

Figure P9.2 shows real and imaginary parts of the Fourier transform of a signal *x(t).*

- (a) Sketch the magnitude and phase of the Fourier transform $X(\omega)$.
- **(b)** In general, if a signal $x(t)$ is real, then $X(-\omega) = X^*(\omega)$. Determine whether $x(t)$ is real for the Fourier transform sketched in Figure P9.2.

P9.3

Determine which of the Fourier transforms in Figures **P9.3-1** and **P9.3-2** correspond to real-valued time functions.

P9.4

- (a) **By** considering the Fourier analysis equation or synthesis equation, show the validity in general of each of the following statements:
	- (i) If $x(t)$ is real-valued, then $X(\omega) = X^*(-\omega)$.
	- (ii) If $x(t) = x^*(-t)$, then $X(\omega)$ is real-valued.
- **(b)** Using the statements in part (a), show the validity of each of the following statements:
	- (i) If $x(t)$ is real and even, then $X(\omega)$ is real and even.
	- (ii) If $x(t)$ is real and odd, then $X(\omega)$ is imaginary and odd.

P9.5

- (a) In the lecture, we derived the transform of $x(t) = e^{-at}u(t)$. Using the linearity and scaling properties, derive the Fourier transform of $e^{-\alpha|t|} = x(t) + x(-t)$.
- **(b)** Using part (a) and the duality property, determine the Fourier transform of $1/(1 + t^2)$
- **(c)** If

$$
r(t) = \frac{1}{1 + (3t)^2},
$$

find $R(\omega)$.

(d) $x(t)$ is sketched in Figure P9.5. If $y(t) = x(t/2)$, sketch $y(t)$, $Y(\omega)$, and $X(\omega)$.

Show the validity of the following statements:

(a)
$$
x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) d\omega
$$

\n(b) $X(0) = \int_{-\infty}^{\infty} x(t) dt$

P9.7

The output of a causal LTI system is related to the input $x(t)$ by the differential equation

$$
\frac{dy(t)}{dt} + 2y(t) = x(t)
$$

- (a) Determine the frequency response $H(\omega) = Y(\omega)/X(\omega)$ and sketch the phase and magnitude of $H(\omega)$.
- **(b)** If $x(t) = e^{-t}u(t)$, determine $Y(\omega)$, the Fourier transform of the output.
- (c) Find $y(t)$ for the input given in part (b).

P9.8

By first expressing the triangular signal $x(t)$ in Figure P9.8 as the convolution of a rectangular pulse with itself, determine the Fourier transform of $x(t)$.

Optional Problems

P9.9

Using Figure P9.9-1, determine $y(t)$ and sketch $Y(\omega)$ if $X(\omega)$ is given by Figure **P9.9-2.** Assume $\omega_c > \omega_0$.

P9.6

P9.10

Compute the Fourier transform of each of the following signals:

(a)
$$
[e^{-\alpha t} \cos \omega_0 t] u(t), \quad \alpha > 0
$$

\n(b) $e^{-3|t|} \sin 2t$
\n(c) $\left(\frac{\sin \pi t}{\pi t}\right) \left(\frac{\sin 2\pi t}{\pi t}\right)$

P9.11

Consider the following linear constant-coefficient differential equation **(LCCDE):**

$$
\frac{dy(t)}{dt} + 2y(t) = A \cos \omega_0 t
$$

Find the value of ω_0 such that $y(t)$ will have a maximum amplitude of $A/3$. Assume that the resulting system is linear and time-invariant.

P9.12

Suppose an LTI system is described **by** the following **LCCDE:**

$$
\frac{d^2y(t)}{dt^2} + \frac{2dy(t)}{dt} + 3y(t) = \frac{4dx(t)}{dt} - x(t)
$$

(a) Show that the left-hand side of the equation has a Fourier transform that can be expressed as

$$
A(\omega)Y(\omega), \quad \text{where } Y(\omega) = \mathcal{F}\{y(t)\}
$$

Find $A(\omega)$.

(b) Similarly, show that the right-hand side of the equation has a Fourier transform that can be expressed as

$$
B(\omega)X(\omega), \qquad \text{where } X(\omega) = \mathcal{F}\{x(t)\}
$$

(c) Show that $Y(\omega)$ can be expressed as $Y(\omega) = H(\omega)X(\omega)$ and find $H(\omega)$.

P9.13

From Figure P9.13, find $y(t)$ where

P9.14

(a) Determine the energy in the signal $x(t)$ for which the Fourier transform $X(\omega)$ is given **by** Figure P9.14.

(b) Find the inverse Fourier transform of $X(\omega)$ of part (a).

P9.15

Suppose that the system F takes the Fourier transform of the input, as shown in Figure **P9.15-1.**

What is *w(t)* calculated as in Figure **P9.15-2?**

P9.16

Use properties of the Fourier transform to show **by** induction that the Fourier transform of

$$
x(t) = \frac{t^{n-1}}{(n-1)!} e^{-at} u(t), \qquad a > 0
$$

is

$$
X(\omega) = \frac{1}{(a + j\omega)^n}
$$