

Techno India NJR Institute of Technology

Academic Administration of Techno NJR Institute Syllabus Deployment

Name of Faculty	: Mrs. Nisha Patel	Subject Code: 6ME4-22		
Subject	: Vibration Engineering	ig Sem: VI		
Department	: Mechanical Enginee	ring		
Total No. of Hours Planned:25 HrsMax. Marks: 75(IA: 45, ETE: 30)				

COURSE OUTCOMES:

At the end of this course students will be able to:

- CO1: Design on experiment to measure the periodic time of freevibrations of single degree and multi degree of freedom system
- CO2: Analyze the mechanical vibrations to determine the material properties of mechanical elements used
- CO3: Understand the fundamental of vibration measurement in the real world.

SN	Agenda	Exposure	
1	Single DOF System	To verify relation $T = 2\pi (1/g)$ for a simple pendulum.	
2	Compound Pendulum	To determine radius of gyration of compound pendulum.	
3	Bifilar Suspension	To determine the radius of gyration of given bar by using	
		bifilar suspension.	
4	Undamped 1 DOF	To determine natural frequency of a spring mass system.	
5	System	Equivalent spring mass system.	
6	Free 1 DOF Torsional	To determine natural frequency of free torsional	
	Vibration	vibrations of single rotor system. i. Horizontal rotor ii.	
		Vertical rotor	
7	Multi DOF System	To verify the Dunkerley's rule.	
8	Damped 1 DOF	Performing the experiment to find out damping co-	
	System	efficient in case of free damped torsional vibration	
9	Trifiler Suspension	To conduct experiment of trifler suspension.	

10	Forced Harmonic	Harmonic excitation of cantilever beam using electro-	
10	Excitation	_	
	Excitation	5	
		frequencies	
11	Vibration	Study of Vibration measuring instruments.	
	Measurement		
12	Virtual Lab Tour	Perform study of the following using Virtual Lab	
		http://www.vlab.co.in/	
13	Forced Vibration of a	Forced Vibration of a Cantilever Beam with a Lumped	
	Cantilever Beam	Mass at Free End: To calculate the natural freq and	
		damping ratio for forced vibration of a single DOF	
		cantilever beam system, experimentally; and compare the	
		results with theoretical values.	
14	Harmonicaly Excited	: To analyze the forced vibration response of a single	
17	Forced Vibration of a		
		DOF system at diff damping ratio and frequency ratio.	
15	Single DOF System		
15	Virtual Lab Tour	Perform study of the following using Virtual Lab	
		http://www.vlab.co.in/	
16	Forced Vibration	Forced Vibration of a Cantilever Beam with a Lumped	
		Mass at Free End: To calculate the natural freq and	
		damping ratio for forced vibration of a single DOF	
		cantilever beam system, experimentally; and compare the	
		results with theoretical values.	
17	Harmonicaly Excited	To analyze the forced vibration response of a single DOF	
	Forced Vibration of a	system at diff damping ratio and frequency ratio.	
	Single DOF System		
L	6 1	1	

TEXT/REFERENCE BOOKS

- 1. RAO S.S., "MECHANICAL VIBRATIONS", PEARSON EDUCATION, 2ND INDIAN REPRINT
- 2. AMBEKAR A.G., "MECHANICAL VIBRATIONS AND NOISE ENGINEERING", PRENTICE-HALL OF INDIA PVT. LTD.