A
PROJECT REPORT
on
EMPLOYEE MANAGEMENT SYSTEM
	
Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

Submitted by
Sanskruti Joshi(19ETCCS058)
Neha Prasad(19ETCCS043)
Harshit Paliwal(19ETCCS025)
Yashmith Jethi(19ETCCS084)
VIII semester, CSE
Under Guidance of
Aditya Maheshwari
Head of Industry Project
CSE & Techno India NJR
Institute of Technology

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY - 2023

A
PROJECT REPORT
on
EMPLOYEE MANAGEMENT SYSTEM

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

Submitted by
Sanskruti Joshi(19ETCCS058)
Neha Prasad(19ETCCS063)
Harshit Paliwal(19ETCCS025)
Yashmith Jethi(19ETCCS084)
VIII semester, CSE

Under Guidance of
Aditya Maheshwari
Head of Industry Project
CSE & Techno India NJR
Institute of Technology

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY - 2023

ACKNOWLEDGMENT

We take this opportunity to record our sincere thanks to all who helped us to successfully complete this work. Firstly, We are grateful to our supervisor Aaditya Maheshwari for his invaluable guidance and constant encouragement, support and most importantly for giving us the opportunity to carry out this work.
We would like to express our deepest sense of gratitude and humble regards to our
Head of Department Dr. Rimpy Bishnoi for giving invariable encouragement in our endeavors and providing necessary facility for the same. Also a sincere thanks to all faculty members of CSE, TINJRIT for their help in the project directly or indirectly.
Finally, We would like to thank my friends for their support and discussions that have proved very valuable for us. We are indebted to our parents for providing constant support, love and encouragement. We thank them for the sacrifices they made so that we could grow up in a learning environment. They have always stood by us in everything we have done, providing constant support, encouragement and love

Sanskruti Joshi(19ETCCS058)
Neha Prasad(19ETCCS043)
Harshit Paliwal(19ETCCS025)
Yashmith Jethi(19ETCCS084)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001

CONTENTS

	Abstract
	……………………………………………………………….
	i

	Contents
	……………………………………………………………….
	ii – iii

	List of Figures ……………………………………………………............
	iv – v

	List of Tables …………………………………………………………….
	vi

	List of Abbreviations Used……………………………………………….
	vii – viii

	Chapter 1
	INTRODUCTION…………………………………………...
	1

	
	1.1 Literature Survey ………….…………………………….
	2

	
	1.2 Contribution …………………………………………….
	3

	
	1.3 Organization of Dissertation ……………………………
	4

	
	1.4 Tools Used ……………………………………………...
	4

	Chapter 2
	HASH FUNCTIONS……………………………………….
	5

	
	2.1 Definition And Properties of Hash Functions…………...
	5

	
	2.2 Applications of Hash Functions…………………………
	7

	
	2.3 Attacks on Hash Functions………………………………
	13

	
	2.4 Hash Computation Flow…………………………………
	13

	
	2.4.1 SHA1………………………………………………
	14

	
	2.4.1.1 SHA1 Functions…………………………………
	15

	
	2.4.1.2 SHA1 Constants…………………………………
	17

	
	2.4.1.3 SHA1 Computation Flow………………..............
	17

	
	2.5 Different Hash Implementations………………………...
	20

 (
xxxvii
i
)
LIST OF FIGURES

	Fig 2-1
	Hashing Operation………………………………………….......
	6

	Fig 2-2
	Pre-image Resistance…………………………………………..
	6

	Fig 2-3
	Second Pre-image Resistance…………………………………..
	7

	Fig 2-4
	Collision Resistance……………………………………………
	7

	Fig 2-5
	Verifying Data Integrity………………………………………..
	9

	Fig 2-6
	Storing The Hash of a Password……………………………….
	10

	Fig 2-7
	Authenticating Users……………………………………….......
	11

	Fig 2-8
	Application of Digital Signature…………………………….....
	13

	Fig 2-9
	Verification of a Digital Signature……………………………
	13

	Fig 2-10
	General Hash Computation Flow…………………………........
	15

	Fig 2-11
	Ch Function Architecture………………………………………
	16

	Fig 2-12
	Parity Function Architecture…………………………………...
	16

	Fig 2-13
	Maj Function Architecture……………………………………..
	17

	Fig 2-14
	Message Padding……………………………………………….
	18

	Fig 2-15
	SHA-1 Computation Flow……………………………………..
	21

	Fig 2-16
	General Block Diagram for a Hash Function Implementation...
	23

	Fig 3-1
	FPGA Architecture……………………………………………..
	29

	Fig 3-2
	HDL Based FPGA design Flow………………………………..
	30

	Fig 3-3
	Schematic Based FPGA design Flow………………………….
	31

	Fig 3-4
	Levels of Abstraction…………………………………………..
	32

LIST OF TABLES

	Table 2-1
	SHA Summary…………………………………………...
	15

	Table 2-2
	SHA- 1 Functions………………………………………...
	17

	Table 2-3
	SHA- 1 Constants………………………………………...
	18

	Table 2-4
	Initial Hash Value for SHA-1…………………………….
	19

	Table 2-5
	Commercial Hash Function Cores……………………….
	27

	Table 3-1
	Comparison of Resources Available in various FPGAs…
	33

	Table 4-1
	Resource Utilization of Initial module for Virtex5………
	37

	Table 4-2
	Resource Utilization of Round module for Virtex5……...
	41

	Table 4-3
	Resource Utilization of Last Block module for Virtex5…
	43

	Table 4-4
	Resource Utilization of Final module for Virtex5……….
	46

	Table 4-5
	Resource Utilization of Top module for Virtex5………...
	49

	
Table 4-6
	Device Utilization Summary after Synthesis (Virtex5- XC5VLX220)……………………………………………..
	
51

	Table 4-7
	Timing Report after Synthesis (Virtex5-XC5VLX220)…
	51

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In today's fast-paced business world, managing employee information effectively is paramount to the success of any organization. The Employee Management System is a comprehensive software solution designed to streamline and simplify the management of employee data, providing businesses with the tools they need to efficiently handle their human resource processes. This system offers a wide range of features and functionalities, empowering organizations to update, delete, and add employee information seamlessly.

The Employee Management System leverages the power of Advanced Java, Spring Boot, and MySQL to create a robust and scalable application. Advanced Java provides the foundation for building complex and feature-rich software, while Spring Boot enables rapid development and easy integration of various components. The backend database, powered by MySQL, ensures reliable and secure storage of employee data. By combining these technologies, the Employee Management System offers a powerful and efficient solution for managing employee information.

1.2 SCOPE

1. Efficient Employee Data Management: The system provides a centralized platform to store and manage employee information, including personal details, contact information, job roles, and performance records. It ensures accurate and up-to-date data, eliminating the need for manual paperwork and reducing errors.
2. Streamlined HR Processes: The system simplifies various HR processes, such as updating employee information, handling employee onboarding and offboarding, managing leave and attendance records, and generating reports.

It automates these tasks, saving time and improving efficiency for HR departments.
3. Improved Decision-Making: By providing easy access to comprehensive employee data, the system enables informed decision-making. Managers can quickly retrieve relevant information about employees, such as performance history and skills, to make strategic decisions regarding promotions, training, and resource allocation.
4. Compliance with Regulations: The system ensures compliance with data privacy regulations by securely storing and managing employee data. It allows HR departments to define access levels and permissions, ensuring that sensitive information is only accessible to authorized personnel.
5. Enhanced Employee Engagement: The system can include features such as self-service portals for employees to access their own information, submit leave requests, update personal details, and view company policies. This improves transparency and empowers employees to actively participate in managing their own data.
6. Integration with Payroll and Accounting Systems: The Employee Management System can be integrated with payroll and accounting software, streamlining the process of calculating salaries, generating pay stubs, and managing employee benefits. This integration eliminates manual data entry and reduces the chances of errors.
7. Scalability and Customization: The system can be designed to accommodate organizations of various sizes and industries. It should allow customization to meet specific requirements and be scalable to handle a growing number of employees and evolving business needs.

1.3 FUNCTIONAL REQUIREMENTS

Functional Requirements are those that refer to the functionality of the system, i.e., what services it will provide to the user. Nonfunctional (supplementary) requirements pertain to other information needed to produce the correct system and are detailed separately.

1.4 USE CASE

Admin can do the following functions:
· Login using credentials.
· Add new employees.
· View All users
· Edit user information
· Delete user information

1.5 OVERALL DESCRIPTION

An Employment Management System is a software application or platform that helps organizations streamline and automate various aspects of the employment lifecycle. It encompasses a range of functionalities related to managing employees, their information, and their interactions with the organization. Here's an overall description of an Employment Management System:

· Employee Information Management: The system allows organizations to store and manage employee data, including personal details, contact information, employment history, job roles, and more. It provides a centralized repository for all employee-related information.

· Recruitment and Onboarding: The system facilitates the recruitment process by managing job postings, receiving and processing applications, scheduling interviews, and assisting in candidate selection. It also helps with the onboarding process by automating the creation of employee profiles, provisioning access to systems, and conducting new hire orientations.

· Time and Attendance Tracking: The system enables organizations to track employee attendance, work hours, and leaves. It may include features like clock-in/clock-out functionality, timesheet management, leave request and

approval workflows, and integration with payroll systems for accurate salary calculations.

· Performance Management: The system provides tools to set performance goals, conduct employee evaluations, and track performance metrics. It supports regular performance reviews, feedback collection, and performance improvement planning. It can also generate performance reports for management analysis.

· Training and Development: The system facilitates employee training and development activities by managing training programs, course registration, and tracking employee progress. It may include features such as skill assessment, training needs analysis, and automated reminders for upcoming training events.

· Employee Self-Service: The system typically includes self-service portals or interfaces where employees can access their personal information, submit time-off requests, view pay stubs, update contact details, and participate in performance evaluations. It empowers employees to manage certain aspects of their employment independently.

· HR Analytics and Reporting: The system provides analytics and reporting capabilities to extract valuable insights from employee data. It enables HR professionals and management to generate reports on various HR metrics, such as headcount, turnover rate, training effectiveness, and performance trends. These insights help in making informed decisions and improving workforce management strategies.

· Compliance and Document Management: The system helps organizations ensure compliance with employment laws and regulations by managing employee contracts, policies, and other relevant documents. It may include features like document storage, version control, and automated reminders for contract renewals or policy updates.

· Integration and Scalability: An effective Employment Management System integrates with other HR and organizational systems, such as payroll, benefits administration, and applicant tracking systems. It should also be scalable to accommodate the growing needs of the organization as it expands its workforce.

Overall, an Employment Management System simplifies HR processes, improves efficiency, and enhances employee experiences by providing a centralized platform for managing various aspects of the employment lifecycle. It reduces manual administrative tasks, increases data accuracy, and enables HR professionals to focus on strategic initiatives and employee engagement.

CHAPTER 2

SOFTWARE REQUIREMENT SPECIFICATION

1.1 ABOUT SPRING BOOT

Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can "just run". We take an opinionated view of the Spring platform and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need minimal Spring configuration. If you’re looking for information about a specific version, or instructions about how to upgrade from an earlier release, check out the project release notes section on our wiki.
Features:

1. Create stand-alone Spring applications
2. Embed Tomcat, Jetty or Undertow directly (no need to deploy WAR files)
3. Provide opinionated 'starter' dependencies to simplify your build configuration
4. Automatically configure Spring and 3rd party libraries whenever possible
5. Provide production-ready features such as metrics, health checks, and externalized configuration
6. Absolutely no code generation and no requirement for XML configuration

1.1.1 SPRING BOOT ARCHITECTURE

Spring Boot follows a layered architecture that promotes separation of concerns and modularity. Let's explore the key components and layers of the Spring Boot architecture:

1. Presentation Layer: This layer is responsible for handling user interactions and delivering responses. It includes components such as controllers, which receive incoming requests, process them, and return appropriate responses.

Spring MVC (Model-View-Controller) is commonly used for implementing the presentation layer in Spring Boot applications.

2. Service Layer: The service layer contains the business logic of the application. It encapsulates the core functionality and handles complex operations. Services typically interact with repositories or other services to perform data manipulation or other operations. They can be accessed by controllers or other services.

3. Persistence Layer: This layer deals with data storage and retrieval. It consists of repositories or data access objects (DAOs) that provide an abstraction over the underlying database. Spring Data JPA, which integrates with ORM frameworks like Hibernate, simplifies database operations by providing a high- level API for interacting with databases.

4. Domain Layer: The domain layer represents the domain objects and business entities of the application. It includes classes that model the data structure and behavior of the system. These objects are typically used by the service and persistence layers to perform operations on data.

5. Configuration Layer: Spring Boot leverages convention over configuration, which means that many default configurations are provided out-of-the-box. However, the configuration layer allows you to customize the application's behavior. It includes configuration files, annotations, and classes responsible for defining beans, managing dependencies, and configuring various aspects of the application.

6. Security Layer: Spring Security is a popular module for implementing security features in Spring Boot applications. It provides authentication, authorization, and other security mechanisms to protect the application and its resources. The security layer ensures that only authorized users can access specific parts of the application.

7. External Services and Integration: Spring Boot applications often need to interact with external services such as databases, message brokers, APIs, or other microservices. Spring Boot provides integration capabilities through modules like Spring Integration, Spring AMQP, and Spring Web Services to facilitate seamless communication with these external services.

8. Testing Layer: Spring Boot encourages test-driven development and provides a comprehensive testing framework. It includes tools like JUnit and Mockito for unit testing, as well as frameworks like Spring Test and Spring Boot Test for integration testing. Testing ensures the reliability and correctness of the application's behavior.

These layers work together to build a robust and scalable Spring Boot application. The modular architecture allows for easy maintenance, flexibility, and extensibility, enabling developers to focus on implementing business logic while Spring Boot takes care of the underlying infrastructure and boilerplate code.

[image:]

Figure 1: Spring Boot Architecture

Figure 2: Spring Boot Flow Architecture

1.2 ABOUT JAVA

Java is an incredibly important programming language due to its widespread adoption, versatility, and robustness. It has been a staple in enterprise software development, powering countless critical systems and applications across various industries. Java's platform independence allows it to run on different operating systems, making it highly portable. Its vast ecosystem of libraries and frameworks enables developers to build scalable, secure, and efficient applications. With its object-oriented approach, extensive tooling, and strong community support, Java continues to be a top choice for building enterprise-level software, mobile apps, web applications, and much more.

Java is a widely used programming language known for its versatility, portability, and robustness. It was originally developed by Sun Microsystems (now owned by Oracle Corporation) and released in 1995. Here are some key points about the usage of Java:

· Platform Independence: Java is a platform-independent language, meaning that Java programs can run on any system with a Java Virtual Machine (JVM) installed. This "write once, run anywhere" feature makes Java suitable for developing applications that can run on different operating systems, such as Windows, Linux, macOS, and more.

· Object-Oriented Programming: Java is an object-oriented programming (OOP) language, which means it emphasizes the use of objects, classes, and inheritance. It provides features like encapsulation, polymorphism, and abstraction, enabling developers to build modular and reusable code.

· Application Development: Java is commonly used for developing a wide range of applications, including desktop applications, web applications, mobile apps (using the Android platform), enterprise-level systems, scientific applications, and more. It offers a rich set of libraries and frameworks that facilitate application development.

· Web Development: Java has been widely adopted for web development. Java-based web applications can be built using frameworks like JavaServer Faces (JSF), Spring MVC, and Play Framework. Additionally, Java Servlets and JavaServer Pages (JSP) are commonly used for server-side programming in conjunction with web servers like Apache Tomcat.

· Enterprise Development: Java is extensively used in enterprise-level development. The Java Enterprise Edition (Java EE) platform provides APIs and specifications for developing scalable, reliable, and secure enterprise applications. It includes features like JavaServer Faces (JSF), Enterprise

JavaBeans (EJB), Java Persistence API (JPA), and Java Message Service (JMS).

· Android Development: Java is the primary programming language for developing Android applications. The Android SDK (Software Development Kit) provides a set of tools and libraries that allow developers to create Android apps using Java. However, starting from Android 11, Kotlin has been promoted as the preferred language for Android development, although Java remains widely used.

· Big Data and Analytics: Java is utilized in big data processing and analytics frameworks like Apache Hadoop and Apache Spark. These frameworks enable the distributed processing of large datasets, and Java is often used f or writing the core functionality and algorithms.

· Tools and Ecosystem: Java has a vast ecosystem of libraries, frameworks, and development tools that contribute to its popularity and productivity. Popular Java frameworks include Spring, Hibernate, Struts, and JavaFX. Integrated Development Environments (IDEs) like Eclipse, IntelliJ IDEA, and NetBeans provide powerful development environments with code editors, debugging tools, and project management features.

· Community and Support: Java has a large and active community of developers worldwide. It has extensive documentation, tutorials, forums, and online resources that help developers get started, troubleshoot issues, and stay updated with the latest developments in the Java ecosystem.

· Security: Java has built-in security features that help developers create secure applications. The Java Security Manager allows fine-grained control over application permissions, and Java Cryptography Architecture provides encryption and secure communication capabilities.

Overall, Java's versatility, portability, extensive libraries, and active community make it a popular choice for a wide range of applications, from small-scale projects to large enterprise systems.

1.3 ABOUT API

An API, which stands for Application Programming Interface, is a set of rules and protocols that allows different software applications to communicate and interact with each other. It defines how different components of software systems should interact, what data formats they should use, and what operations they can perform. APIs enable software applications to access and use the functionality and data of other applications, services, or platforms without having to understand the internal workings or implementation details. They provide a layer of abstraction that simplifies development by providing pre-built and well-documented methods and endpoints.

APIs are crucial for enabling integration between different systems, allowing them to work together and exchange information seamlessly. They facilitate the development of software applications with modular and scalable architectures, as different components can be developed independently and communicate through APIs. APIs are widely used in various domains, including web development, mobile app development, cloud computing, and IoT (Internet of Things). They can be used for a variety of purposes, such as retrieving data from external sources, interacting with social media platforms, processing payments, accessing hardware functionality, and much more.
APIs are typically exposed through a set of endpoints that allow developers to make requests and receive responses in a specified data format, such as JSON or XML. They can follow different architectural styles, including REST (Representational State Transfer) and GraphQL, each with its own principles and best practices.

In Java, making API calls involves utilizing libraries and frameworks that provide HTTP client functionality to send and receive HTTP requests and responses. One commonly used library for this purpose is the Java HttpClient library, which was introduced in Java 11 as part of the java.net package. Here's a step-by-step explanation of API calling in Java:
1. Import required libraries: Begin by importing the necessary classes and packages for making API calls. In the case of Java HttpClient, you would import classes such as HttpClient, HttpRequest, HttpResponse, and HttpHeaders.

2. Create an instance of HttpClient: Instantiate an HttpClient object, which represents the client that will send the HTTP request. You can create a new instance using the HttpClient.newBuilder() method.

3. Build the request: Create an instance of HttpRequest to specify the details of the API request, such as the URL, HTTP method, headers, and request body (if required). Use the HttpRequest.newBuilder() method to build the request object, and set its properties accordingly.

4. Send the request: Use the HttpClient instance to send the constructed HttpRequest using the send() method. This method returns an instance of HttpResponse, which represents the response received from the API.

5. Process the response: Access the response received from the API by extracting the relevant information from the HttpResponse object. This may involve reading the status code, response body, and headers. You can use methods like response.statusCode(), response.body(), and response.headers() to retrieve the desired information.
Handle errors: Implement error handling logic to handle any exceptions or error responses that may occur during the API call. For example, you can use try-catch blocks to catch exceptions like IOException and HttpClientException, and handle them appropriately in your application.

Parse and use the response data: If the API response contains data, parse it based on the expected format (e.g., JSON or XML) using libraries like Jackson or Gson. Extract the relevant information from the response and process it according to your application's requirements.

It's important to note that the specific implementation of API calling in Java may vary depending on the libraries and frameworks being used. Other popular libraries for making API calls in Java include Apache HttpClient and OkHttp. Additionally, frameworks like Spring Boot provide built-in features for handling API requests and responses.
In summary, APIs play a vital role in enabling seamless communication and integration between different software applications, systems, and services. They simplify development, foster interoperability, and empower developers to leverage the functionality and data of external resources, enhancing the capabilities of their own applications.

Figure 3: API Calling

1.4 ABOUT MYSQL

MySQL is an open-source relational database management system (RDBMS) that is widely used for managing and storing structured data. It was initially developed by MySQL AB and later acquired by Oracle Corporation.
It is of paramount importance as it provides a reliable and high-performing solution for managing and storing structured data. Its scalability, compatibility, and extensive community support make it an ideal choice for a wide range of applications and industries. With its robust security features, ease of use, and cost-effectiveness as an open-source database system, MySQL has become a cornerstone in the data management landscape, empowering businesses to efficiently store, retrieve, and manipulate data to drive their operations and decision-making processes.

MySQL holds significant importance in the world of data management and storage. Here are some key reasons why MySQL is highly regarded:

· Reliability and Stability: MySQL is known for its stability and reliability. It has a proven track record of handling large volumes of data and high concurrent connections with minimal downtime. Many organizations and enterprises rely on MySQL for critical applications and systems

· Performance: MySQL is designed to deliver high-performance results. It is optimized for efficient query execution and offers various indexing techniques, caching mechanisms, and query optimization features. With proper configuration and indexing, MySQL can handle complex queries and process data quickly.

· Scalability: MySQL offers scalability options to accommodate the growth of data and users. It supports various scaling techniques, such as replication, sharding, and clustering. These mechanisms allow for distributing data across multiple servers, improving performance and providing fault tolerance.

· Flexibility and Versatility: MySQL supports a wide range of operating systems, including Windows, Linux, macOS, and Unix-like systems. It also provides compatibility with various programming languages and frameworks, making it versatile for application development.

· Open Source and Community Support: MySQL is an open-source database system, which means it is freely available and customizable. It has a large and active community of developers who contribute to its development, provide support, and share knowledge. The community-driven nature ensures continuous improvement and a wealth of resourc es available for troubleshooting and learning.

· Integration and Compatibility: MySQL integrates well with many popular software and tools. It supports standard protocols like JDBC and ODBC, making it compatible with a wide range of applications, frameworks, and programming languages. Additionally, MySQL is compatible with other database systems, allowing for data migration and interoperability.

· Security: MySQL provides robust security features to protect data. It offers various authentication mechanisms, access control, and encryption options to ensure data confidentiality and integrity. Regular updates and security patches are released to address any identified vulnerabilities.

· Ease of Use: MySQL is known for its user-friendly interface and ease of administration. It provides intuitive tools and graphical user interfaces like MySQL Workbench and phpMyAdmin, which simplify database management tasks such as creating tables, managing users, and executing queries.

· Cost-Effective: MySQL being open source eliminates the need for expensive licensing fees. Organizations can leverage its powerful features and capabilities without incurring significant costs. This makes MySQL an attractive option for small businesses and startups with limited budgets.

· Wide Adoption and Support: MySQL has been widely adopted by individuals, businesses, and organizations across various industries and sectors. Its popularity ensures a vast community of users and extensive documentation, tutorials, and online resources available for learning and troubleshooting.

Overall, MySQL's importance lies in its reliability, performance, scalability, flexibility, and cost-effectiveness. It continues to be a preferred choice for managing and storing structured data in various applications, ranging from small-scale projects to large-scale enterprise systems.

1.5 ABOUT THYMELEAF

Thymeleaf," which is a Java-based server-side templating engine commonly used in web applications. Thymeleaf is often used in conjunction with Spring Framework, including Spring Boot, to generate dynamic HTML pages. It offers a natural and elegant way to integrate server-side and client-side code, as it allows developers to write templates that can be rendered both on the server and in the browser. Here are some key features and concepts related to Thymeleaf:

1. Template Engine: Thymeleaf acts as a template engine, which means it processes templates written in HTML/XML with additional attributes and expressions specific to Thymeleaf. It replaces placeholders or expressions with actual values dynamically during runtime.

2. Natural Templates: Thymeleaf templates are designed to be easily readable and writable by developers, as they resemble standard HTML. This makes it easier for front-end developers to work with Thymeleaf templates and for designers to understand and modify them.

3. Expression Language: Thymeleaf provides a powerful expression language that allows you to access and manipulate data from the server-side within your templates. Expressions are enclosed in curly braces ({}) and can be used to perform operations, conditionals, iteration, and more.

4. Template Fragments: Thymeleaf supports the concept of reusable template fragments. These fragments can be included or inserted into other templates, allowing you to modularize your code and avoid duplication.

5. Attribute Processing: Thymeleaf treats HTML attributes with special Thymeleaf-specific prefixes as instructions to perform various operations. These instructions can include conditionals, iterations, dynamic attribute values, and more.

6. Internationalization and Localization: Thymeleaf provides built-in support for internationalization (i18n) and localization (l10n). It allows you to easily display localized messages, dates, numbers, and other content based on the user's locale.

7. Integration with Spring: Thymeleaf works seamlessly with the Spring Framework and is often used as the default templating engine in Spring Boot applications. It integrates with Spring's features, such as form handling, validation, and security, making it a popular choice for Spring developers.

8. Client-Side Integration: Thymeleaf allows you to incorporate JavaScript frameworks and libraries into your templates, making it easy to build interactive and dynamic web applications. You can use Thymeleaf expressions and attributes to bind data and manipulate the DOM.

Thymeleaf offers a flexible and robust solution for server-side rendering of dynamic web content. It provides a smooth development experience, promotes code readability, and integrates well with the Spring ecosystem.

CHAPTER 3 WORKING

The employee management system we have created using the Spring Boot framework is designed to handle the CRUD (Create, Read, Update, Delete) operations for employee information using a MySQL database. Here's a breakdown of its working:

1. Create (Add): The system allows you to add new employee records to the database. It provides a form or an interface where you can enter the necessary details, such as the employee's name, contact information, designation, and any other relevant data. Once you submit this information, the system saves it to the MySQL database.

2. Read: This functionality enables you to retrieve and view the employee information stored in the database. You might have implemented various features to search for employees by their ID, name, or other criteria. The system fetches the requested data from the MySQL database and displays it to the user, either in a tabular format or through a user-friendly interface.

3. Update: With this functionality, you can modify the existing information of an employee. The system provides an interface where you can select the employee you want to update and make the necessary changes. The updated details are then saved back to the MySQL database, ensuring the employee's information is up to date.

4. Delete: This feature allows you to remove employee records from the database. The system provides options to select one or multiple employees for deletion. Once you confirm the deletion, the system removes the corresponding data from the MySQL database, effectively removing the employee from the system.

Behind the scenes, your Spring Boot application likely uses various components to handle the interaction with the database. These may include Spring Data JPA, which provides an abstraction layer for working with relational databases, and Hibernate, an object-relational mapping (ORM) framework that simplifies the database operations by mapping Java objects to database tables.

The system's user interface, whether it's a web application or a desktop application, interacts with the backend services provided by Spring Boot. The Spring Boot application receives user requests, processes them, communicates with the MySQL database to perform the necessary operations, and returns the appropriate response to the user interface for display.

Overall, your employee management system using Spring Boot and MySQL simplifies the task of managing employee information by providing a user-friendly interface and handling the underlying database operations seamlessly.

3.1 SCREENSHOTS

Figure 4: Log-In Page

Figure 5: Creating New Employee

Figure 6: List of Employees

Figure 7: Updating User Information

Figure 8: MySQL Databse

Figure 9: Home Page

	FIELD NAME
	DESCRIPTION
	CONSTRAINTS
	DATA TYPE

	ID
	Unique ID
	Primary Key
	INT

	First Name
	First name of the user
	NULL
	STRING

	Last Name
	Last name of the user
	NULL
	STRING

	Email
	Email of the user
	NULL
	STRING

Table 1

Figure 10: Table Details

3.2 ANNOTATIONS

3.2.1 @Autowired

In Spring Boot, @Autowired is a core annotation used for automatic dependency injection. It is part of the Spring Framework's dependency injection mechanism, which helps manage and wire the dependencies of your application.

Here's some important information about @Autowired in Spring Boot:

1. Dependency Injection: Spring Boot promotes the principle of dependency injection, where dependencies of a class are injected rather than manually created. By using @Autowired, Spring Boot automatically resolves and injects the required dependencies into the class, reducing coupling and enhancing modularity.

2. Automatic Wiring: With @Autowired, Spring Boot automatically performs dependency wiring based on type matching. When you mark a field, constructor, or setter method with @Autowired, Spring Boot scans the application context for a bean of the same type and injects it into the respective component.

3. Bean Resolution: If there are multiple beans of the same type available in the application context, Spring Boot uses additional annotations like @Primary or @Qualifier to resolve the correct bean for injection. @Primary specifies the primary bean to be injected, while @Qualifier provides a more specific identifier to differentiate between multiple beans.

4. Constructor Injection: In addition to field and setter injection, @Autowired can also be used on constructors. Constructor injection is considered a best practice as it ensures the required dependencies are provided at object creation time and helps achieve immutability in the class.

5. Optional Dependencies: By default, @Autowired expects a dependency to be present. However, if a dependency is optional, you can annotate it with @Autowired (required = false) or use @Nullable to indicate that the dependency may be null. This allows for more flexible injection scenarios.

6. Qualifiers and Customization: If you have multiple beans of the same type and need to specify which one to inject, you can use custom qualifiers. By creating your own custom annotation and annotating the beans, you can then use the custom qualifier annotation with @Autowired for precise dependency injection.

7. Field Injection Considerations: While @Autowired can be used with fields directly, it is recommended to follow constructor injection or setter injection for better testability and encapsulation. Field injection may hinder unit testing and can make it harder to reason about dependencies.

Overall, @Autowired simplifies dependency injection in Spring Boot by automatically wiring the required dependencies. It promotes loose coupling, enhances code modularity, and allows for flexible bean resolution in scenarios with multiple beans of the same type.

3.2.1 @GetMapping

In Spring Boot, @GetMapping is an annotation used to map HTTP GET requests to specific handler methods in a controller class. It is part of the Spring MVC framework, which provides the foundation for building web applications.

Here's some important information about @GetMapping in Spring Boot:

1. Request Mapping: @GetMapping is a specialized version of the more general @RequestMapping annotation that is specific to GET requests. It is used to map a specific URL or URL pattern to a method that will handle the GET request.

2. URL Mapping: With @GetMapping, you can specify the URL or path that the handler method will be mapped to. This can be done by providing the URL as a value to the annotation. For example, @GetMapping("/users") maps the handler method to the "/users" URL.

3. HTTP Methods: Since @GetMapping specifically maps GET requests, it is useful for handling read operations or retrieving data from the server. If you want to handle other HTTP methods like POST, PUT, or DELETE, you would use @PostMapping, @PutMapping, or @DeleteMapping, respectively.

4. Handler Methods: The methods annotated with @GetMapping are known as handler methods or controller methods. These methods are responsible for processing the incoming GET requests and returning the appropriate response. They can include business logic, interact with services or repositories, and return the response to the client.

5. Path Variables: @GetMapping supports the use of path variables, which allow dynamic values to be extracted from the URL. Path variables are denoted by curly braces ({}) in the URL mapping. For example, @GetMapping("/users/{id}") maps the "/users/{id}" URL, where "{id}" can be any value and will be passed as a parameter to the handler method.

6. Response Types: The return type of a @GetMapping handler method can vary. It can be a view name, indicating a view to be rendered and returned to the client, or it can be a data object that will be automatically serialized to JSON or XML and returned as the response body.

7. Request Parameters: @GetMapping also supports the use of query parameters in the URL. Query parameters are specified after the question mark (?) in the URL and can be accessed in the handler method using @RequestParam annotations.

8. Multiple Mappings: You can have multiple @GetMapping annotations within the same controller class, each mapping to a different URL or URL pattern. This allows you to define multiple endpoints for different operations or to handle various resources.

By using @GetMapping in Spring Boot, you can easily map GET requests to specific handler methods, define URL patterns, handle path variables and query parameters, and return appropriate responses to clients. It simplifies the development of RESTful APIs and web applications by providing a clear and concise way to handle GET requests.

[image:]

Figure 11: Annotations

CHAPTER 4 FUTURE SCOPE

4.1 TESTING METHODOLOGY

Companies rely on software more than ever to provide and manage information with strategic and operational importance and to provide key decision support. Rising customer expectations for fault-free, requirements-exact software have increased awareness of the importance of software testing as a critical activity.
We begin the testing process by developing a comprehensive plan to test the general functionality and specific features on a variety of platform combinations. Strict quality control procedures are used. The process very files that the application meets the requirements specified in the system requirements document and is bug-free. At the end of each testing day, we prepare a summary of completed and failed tests. Applications are not allowed to launch until all identified problems are fixed. A report is prepared at the end of testing to show exactly what was tested and to list the final outcomes.
Our software testing methodology is applied in three distinct phases: unit testing, system testing, and acceptance were testing.

4.2 UNIT TESTING
The programmers conduct unit testing during the development phase. Programmers can test their specific functionality individually or with other units. However, unit testing is designed to test small pieces of functionality rather than the system. This allows the programmers to conduct the first round of testing to eliminate bugs before they reach the testing staff. In unit testing the analyst tests the programs making up a system.
For this reason, unit testing is sometimes called program testing. Unit testing gives stress on the modules independently of one another, to find errors.This

helps the tester in detecting errors in coding and logic that are contained within that module alone. The errors resulting from the interaction between modules are initially avoided.
For example, a hotel information system consists of modules to handle reservations; guest checking and checkout; restaurant, room service, and miscellaneous charges; convention activities; and accounts receivable billing. For each, it provides the ability to enter, modify or retrieve data and respond to several types of inquiries or print reports. The test cases needed for unit testing should exercise each condition and option.

Unit testing can be performed from the bottom up, starting with the smallest and lowest-level modules and proceeding one at a time. For each module in bottom- up testing, a short program is used to execute the module and provides the needed data, so that the module is asked to perform the way it will when embedded within the larger system.

6.3 SYSTEM TESTING
The objective of system testing is to ensure that all individual programs are working as expected, that the programs link together to meet the requirements specified and to ensure that the computer system and the associated clerical and other procedures work together.
The initial phase of system testing is the responsibility of the analyst who determines what conditions are to be tested, generates test data, produced a schedule of expected results, runs the tests and compares the computer produced results with the expected results with the expected results.
The analyst may also be involved in procedures testing. When the analyst is satisfied that the system is working properly, he hands it over to the users for testing. The importance of system testing by the user must be stressed. It is the user must verify the system and give permission.

During testing, the system is used experimentally to ensure that the software does not fail, i.e., that it will run according to its specifications and in the way, users expect it to. Special test data is input for processing (test plan) and the results are examined to locate unexpected results.
A limited number of users may also be allowed to use the system so analysts can see whether they try to use it in unexpected ways. It is preferable to find these surprises before the organization implements the system and depends on it. In many organizations, testiness performed by people other than those who write the original programs. Using people who do not know how certain parts were designed or programmed ensures more complete and unbiased testing and more reliable software.
The system is tested as a complete, integrated system. System testing first occurs in the development environment but eventually is conducted in the production environment. Functionality and performance testing are designed to catch bugs in the system, unexpected results, or other ways in which the system does not meet the stated requirements.
The testers create detailed scenarios to test the strength and limits of the system, trying to break it if possible. Editorial reviews not only correct typographical and grammatical errors, but also improve the system’s overall usability by ensuring that on-screen language is clear and helpful to users. Accessibility reviews ensure that the system is accessible to users with disabilities.
System testing consists of the following five steps:

1. Program testing
2. String testing
3. System testing
4. System documentation
5. User acceptance testing

4.4 PROGRAM TESTING

A program represents the logical elements of a system. For a program to run satisfactorily, it must compile and test data correctly and tie in properly with other programs. It is the responsibility of a programmer to have an error free program. At The time of testing the system, there are two types of errors that should be checked. These errors are syntax and logic.
A syntax error is a program statement that violates one or more rules of the language in which it is written. An improperly defined field dimension or omitted key words are common syntax errors. These errors are shown through error messages generated by the computer. A logic error, on the other hand, deals with incorrect data fields out of range items, and invalid combinations.
Since the logical errors are not detected by compiler, the programmer must examine the output carefully to detect them. When a program is tested, the actual output is compared with the expected output. When there is a discrepancy, the sequence of the instructions must be traced to determine the problem. The process is facilitated by breaking the program down into self-contained portions, each of which can be checked at certain key points.

4.5 STRING TESTING

Programs are invariably related to one another and interact in a total system. Each program is tested to see whether it conforms to related programs in the system. Each part of the system is tested against the entire module with both test and live data before the whole system is ready to be tested.

4.6 SYSTEM TESTING

System testing is designed to uncover weaknesses that were not found in earlier tests. This includes forced system failure and validation of the total system as it will be implemented by its user in the operational environment. Under this testing, generally we

Take low volumes of transactions based on live data. This volume is increased until the maximum level for each transaction type is reached.
The total system is also tested for recovery and fallback after various major failures to ensure that no data is lost during the emergency. All this is done with the old system still in operation. When we see that the proposed system is successful in the test, the old system is discontinued.

4.7 SYSTEM DOCUMENTATION

All design and test documentation should be well prepared and kept in the library for future reference. The library is the central location for maintenance of the new system.

4.8 USER ACCEPTANCE TESTING

Acceptance test has the objective of selling the user on the validity and reliability of the system. It verifies that the system's procedures operate to system specifications and that the integrity of important data is maintained. Performance of an acceptance test is actually the user's show. User motivation is very important for the successful performance of the system. After that a comprehensive test report is prepared. This report shows the system's tolerance, performance range, error rate and accuracy.

CHAPTER 5

CONCLUSION AND FUTURE ENHANCEMENT

5.1 LIMITATIONS

While creating an employee management system with basic functionalities such as adding, updating, and deleting employees is a good starting point, there are several limitations that you may encounter with such a project. Here are some potential limitations to consider:
Limited Functionality: The system you described focuses solely on basic employee management operations. However, an effective employee management system typically encompasses a broader range of functionalities, such as attendance tracking, leave management, performance evaluations, reporting, and employee self-service capabilities. Without these additional features, the system may not fully meet the diverse needs of an organization.

Lack of Security Measures: Security is a critical aspect of any system that handles sensitive employee information. If your project lacks appropriate security measures, such as encryption, access controls, and user authentication, it could be vulnerable to unauthorized access, data breaches, and privacy violations. Implementing robust security measures is essential to protect employee data.

Absence of Validation and Error Handling: A well-designed system should incorporate thorough data validation and error handling mechanisms. Without proper validation, the system may accept incorrect

or incomplete data, leading to inconsistent records or errors. Error handling should also be implemented to gracefully handle exceptions and provide meaningful error messages to users.

Scalability Challenges: As the organization grows and the number of employees increases, the system may face scalability challenges. It may struggle to handle large amounts of data efficiently, impacting performance and user experience. Ensuring that the system is designed to scale effectively and handle increased data volumes is crucial for long-term usability.

Limited User Roles and Access Controls: In a real-world employee management system, different users have varying roles and permissions. For example, HR managers may have full access to all employee data, while regular employees may have limited access. Without incorporating user roles and access controls, the system may not effectively enforce data privacy and security protocols.

User Interface and User Experience (UI/UX): While your project focuses on core functionalities, the UI/UX aspect is equally important. A user- friendly and intuitive interface enhances usability and efficiency. Neglecting the design and usability aspects may lead to a less satisfying user experience and potential challenges in system adoption.

Reporting and Analytics: Analyzing employee data, generating reports, and gaining insights are crucial for effective decision-making. However, if your project lacks reporting and analytical capabilities, it may hinder the

organization's ability to extract meaningful information and gain valuable insights from the data.

Integration with Other Systems: Organizations often rely on multiple systems for various HR-related processes. Integrating your employee management system with other systems, such as payroll, attendance, or performance management systems, allows for seamless data flow and eliminates the need for duplicate data entry. However, if your project lacks integration capabilities, it may result in data inconsistencies and additional manual efforts.

Considering these limitations, it is important to continuously evaluate and enhance your employee management system to address these shortcomings and meet the evolving needs of the organization and its employees.

5.2 FUTURE ENHANCEMENT

The future scope of an Employee Management System (EMS) is promising, with several potential advancements and areas of improvement. Here are some key areas that can shape the future of EMS:

1. Enhanced Automation: Automation can play a significant role in streamlining various tasks within an EMS. Future systems can integrate artificial intelligence (AI) and machine learning (ML) algorithms to automate routine administrative tasks, such as employee onboarding, leave management, performance evaluations, and payroll processing. This can improve efficiency, reduce human errors, and free up HR personnel for more strategic initiatives.

 (
xlii
i
)

2. Advanced Analytics: Leveraging data analytics and visualization tools, future EMSs can provide deeper insights into employee perf ormance, engagement, and overall organizational health. By analyzing large volumes of data, such as employee feedback, performance metrics, and workforce trends, organizations can make data-driven decisions to optimize employee management strategies and identify areas for improvement.

3. Employee Self-Service: Empowering employees with self-service capabilities can be a future focus for EMSs. Employees can access and update their personal information, view pay stubs, request leaves, enroll in training programs, and participate in performance assessments through a user-friendly interface. Self-service functionality reduces administrative overhead and enhances employee satisfaction by providing convenient access to relevant information and services.

4. Mobile Accessibility: With the increasing use of smartphones and mobile devices, future EMSs are likely to have mobile applications or responsive web interfaces. Mobile accessibility enables employees and managers to access the system on the go, making it easier to perform tasks, access information, and communicate with colleagues. Mobile features may include attendance tracking, notifications, and mobile-friendly dashboards.

5. Integration with Other Systems: EMSs can integrate with other HR-related systems and tools to create a unified employee experience. Integration with recruitment management systems, learning management systems, performance management tools, and payroll systems can provide seamless data flow and enable a holistic approach to employee management. This integration eliminates manual data entry, ensures data consistency, and enhances overall system functionality.

6. Focus on Employee Well-being: The future EMSs may place increased emphasis on employee well-being and work-life balance. They can include features to track employee stress levels, monitor work hours, promote

wellness initiatives, and provide resources for mental health support. Such features can foster a positive work environment and contribute to employee satisfaction and retention.

7. Compliance and Security: As data privacy regulations continue to evolve, future EMSs will need to prioritize compliance and security measures. Integration of robust security protocols, encryption techniques, access controls, and regular data backups will be essential to protect sensitive employee information. Additionally, complying with local labor laws and privacy regulations will ensure the system meets legal requirements.

8. Customization and Scalability: Future EMSs should be flexible and scalable to accommodate the diverse needs of organizations of different sizes and industries. Providing customization options allows organizations to tailor the system to their specific requirements, workflows, and organizational structures. Scalability ensures that the EMS can handle growing employee numbers and data volumes without compromising performance.

In summary, the future of Employee Management Systems holds the potential for enhanced automation, advanced analytics, mobile accessibility, employee self- service, integration with other systems, a focus on employee well-being, compliance and security, and customization and scalability. These advancements can transform the way organizations manage their employees, drive operational efficiencies, and create a positive employee experience.

 BIBLIOGRAPHY

LIST OF USEFUL WEBSITES
www.msdn.microsoft.com
www.w3schools.com
www.webdevelopersnotes.com

LIST OF USEFUL SOURCES.
Ricci, F., Rokach, L., & Shapira, B. (2015). Introduction to Recommender Systems Handbook. In Recommender Systems Handbook (pp. 1-35). Springer.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender Systems Survey. Knowledge-Based Systems, 46, 109-132.

Lam, S. K., Sundaram, H., Schütze, H., & Han, J. (2011). Addressing Cold Start in Recommender Systems: A Semi-supervised Co-training Algorithm. ACM Transactions on Information Systems (TOIS), 29(1), 6.

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

