
A
PROJECT REPORT
on
Movie Ticket Booking using Mern Stack

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

 (
Under Guidance of
Aditya Maheshwari Si
r
Head of Industry Project
Techno India NJR Institute of Technology

) (
Submitted by
Jai Kanthalia
(
19ETCCS029
)
Jignesh Sharma
(
19ETCCS0
63)
Vlll
 Semester
,
CSE
)

								

 (
DEPARTMENT OF
COMPUTER SCIENCE AND
 ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR
-313001
MAY - 20
23
)

A
PROJECT REPORT
on
Movie Ticket Booking using Mern Stack

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

 (
Under Guidance of
Mr. Aditya Maheshwari
H
ead of Industry Project
CSE , Techno India NJR Institute of Technology

) (
Submitted by
Jai Kanthalia 19ETCCS029
Jignesh Sharma 19ETCCS063
Vlll Semester, CSE
)

								

 (
DEPARTMENT OF
COMPUTER SCIENCE AND
 ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR
-313001
MAY - 20
23
)

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled “Movie Ticket Booking” by Jai Kanthalia was successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfillment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

Mr. Aaditya Maheshwari 					Dr. Rimpy Bishnoi
Head of Industry Project 					Head of Department
CSE, Techno India NJR Institute of Technology		Dept. of CSE TINJRIT, Udaipur
Date...................... 					Date...................... 			

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Examiner Certificate

This is to certify that the following student
Jai Kanthalia
of final year B.Tech. (Computer Science and Engineering), was examined for the project work titled
“Movie Ticket Booking using Mern Stack”
during the academic year 2022 – 2023 at Techno India NJR Institute of Technology, Udaipur

Remarks:
Date:

	
 Signature			 		 Signature
(Internal Examiner) 	 	(External Examiner)
Name :- ………………………				Name :- ………………………	
Designation:- ………………..				Designation:- ………………..	
Department: - ………………. 				Department: - ……………….
Organization:- ……………… 				Organization:- ………………

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled “Movie Ticket Booking” by Jignesh Sharma was successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfillment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

Mr. Aaditya Maheshwari 					Dr. Rimpy Bishnoi
Head of Industry Project 					Head of Department
CSE, Techno India NJR Institute of Technology		Dept. of CSE TINJRIT, Udaipur
Date...................... 						Date...................... 			

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Examiner Certificate

This is to certify that the following student
Jignesh Sharma
of final year B.Tech. (Computer Science and Engineering), was examined for the project work titled
“Movie Ticket Booking using Mern Stack”
during the academic year 2022 – 2023 at Techno India NJR Institute of Technology, Udaipur

Remarks:
Date:

	
 Signature			 		 Signature
(Internal Examiner) 	 	(External Examiner)
Name :- ………………………				Name :- ………………………	
Designation:- ………………..				Designation:- ………………..	
Department: - ………………. 				Department: - ……………….
Organization:- ……………… 				Organization:- ………………

Preface

Welcome to the preface of our major project on Movie Ticket Booking System using the MERN stack. In this project, we have developed a web application that allows users to browse movies, view showtimes, and book tickets online. The project leverages the power of the MERN stack, comprising MongoDB, Express.js, React.js, and Node.js, to create a robust and user-friendly platform for movie enthusiasts.

In Chapter 1, We give an overview of the movie ticket booking system and its features. Explain the purpose and benefits of the system for both users and theater administrators. Also the designing, implementing, authentication is been discussed in the first chapter.

Chapter 2 discusses the system used by getting to know the Architecture, Database design and all the User Interfaces used in the frontend development. Showcase wireframes and mockups to demonstrate the layout, navigation, and interaction flow.

Chapter 3 presents the Backend Development how Node.js and Express.js are used and provides the code snippets and instructions for setting up the project directory and configuring dependencies.

Chapter 4. In this Frontend is been discussed that how by help of React.js an application created and what are ways by which Forms and registrations are inserted.

Chapter 5 Describe the unit testing approach and tools used. Provide examples of test cases for critical functions and APIs.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
ACKNOWLEDGMENT

We take this opportunity to record our sincere thanks to all who helped us to successfully complete this work. Firstly, We are grateful to our supervisor Mr. Aaditya Maheshwari for his invaluable guidance and constant encouragement, support and most importantly for giving us the opportunity to carry out this work.
We would like to express our deepest sense of gratitude and humble regards to our
Head of Department Dr. Rimpy Bishnoi for giving invariable encouragement in our endeavors and providing necessary facility for the same. Also a sincere thanks to all faculty members of CSE, TINJRIT for their help in the project directly or indirectly.
Finally, We would like to thank my friends for their support and discussions that have proved very valuable for us. We are indebted to our parents for providing constant support, love and encouragement. We thank them for the sacrifices they made so that we could grow up in a learning environment. They have always stood by us in everything we have done, providing constant support, encouragement and love

Jai Kanthalia (19ETCCS029)
Jignesh Sharma (19ETCCS063)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
CONTENTS
	Abstract
	……………………………………………………………….
	i

	Contents
	……………………………………………………………….
	ii

	List of Figures ………………………………..……………………............
	iii

	Chapter 1
	INTRODUCTION…………………………………………...
	1

	
	 1.1 Project Overview…………..…………………………….
	1

	
	1.2 Objectives… …………………………………………….
	1

	
	1.3 Technologies Used …………...…………………………
	1

	Chapter 2
	SYSTEM DESIGN………………………………………….
	3

	
	2.1 Architecture……………………………………………...
	3

	
	2.2 Database Design…………………………………………
	3

	Chapter 3
	BACKEND DEVELOPMENT..…………………………….
	6

	
	3.1 Setting Up Node.js & Express.js …...…………………...
	6

	
	3.2 Design RESTful API’s…..………………………………
	7

	
	3.3 Implementing User Authentication……………………..
	9

	Chapter 4
	4.1 Building a React.js Application
	11

	Chapter 5
	Code Snippets
	14

	Chapter 6
	Screenshots
	20

	Chapter 7
	Future Scope
	23

LIST OF FIGURES
	Fig 3-1
	Install Node.js………………………………………….….......
	6

	Fig 3-2
	Initialize the project………………………………..…………..
	6

	Fig 3-3
	Install Express.js…………………………………..…….……..
	6

	Fig 3-4
	Create Express.js server…………………………………….…
	7

	Fig 3-5
	Create an instance……………………………………………..
	7

	Fig 3-6
	Define routes………………………………………………….
	7

	Fig 3-7
	Start Express.js server…………………………………...........
	7

	Fig 6-1
	Login Page……………………………....................................
	20

	Fig 6-2
	Sign Up…………………………… ………………………….
	20

	Fig 6-3
	Home Page…………………………...
	21

	Fig 6-4
	Scrolling Page…………………………………………………
	21

	Fig 6-5
	Search Page…………………………………...........................
	22

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

ivi

CHAPTER 1 : INTRODUCTION
1.1 Project Overview
Our major project focuses on developing a Movie Ticket Booking System using the MERN stack. The project aims to create a comprehensive web application that allows users to browse movies, view showtimes, and book tickets online. By utilizing the MERN stack, which consists of MongoDB, Express.js, React.js, and Node.js, we leverage the power of these technologies to build a robust and efficient system. The Movie Ticket Booking System offers a user-friendly interface and a seamless experience for movie enthusiasts. It enables users to register and log in securely, search for movies based on various criteria such as genre, language, and release date, view detailed information about movies including synopsis and cast, and select showtimes that suit their preferences. Users can then proceed to book tickets for their chosen showtime, select seats, and complete the payment process securely.
1.2 Objectives
List the main objectives of the project, such as:
· Designing and implementing a user-friendly interface for movie ticket booking.
· Creating a secure authentication system for user registration and login.
· Integrating a database for storing movie information, showtimes, and user details.
· Allowing users to search for movies, view details, select showtimes, and purchase tickets.
· Ensuring proper validation and error handling throughout the system.

1.3 Technologies Used
The MERN stack is a popular web development stack that consists of four key technologies: MongoDB, Express.js, React.js, and Node.js. It provides a comprehensive set of tools and frameworks for building full-stack web applications. Here's a brief introduction to each component of the MERN stack:
· MongoDB: MongoDB is a NoSQL document database that stores data in a flexible, JSON-like format called BSON (Binary JSON). It is known for its scalability, high performance, and easy integration with JavaScript-based applications. MongoDB allows developers to store and retrieve data efficiently, making it a suitable choice for handling large amounts of data in modern web applications.
· Express.js: Express.js is a minimalistic web application framework for Node.js. It simplifies the process of building robust web applications and APIs by providing a lightweight and flexible middleware layer. Express.js enables developers to handle HTTP requests, define routes, and manage application-level middleware. It also integrates seamlessly with other Node.js libraries, making it a powerful component of the MERN stack.
· React.js: React.js is a popular JavaScript library for building user interfaces. It enables developers to create reusable UI components and efficiently manage the state of an application. React.js uses a virtual DOM (Document Object Model) for efficient rendering and updates, resulting in fast and responsive user interfaces. It follows a component-based architecture, which makes code modular, reusable, and easier to maintain.
· Node.js: Node.js is a server-side JavaScript runtime environment that allows developers to run JavaScript code on the server. It provides a scalable and event-driven architecture, making it suitable for building high-performance web applications. Node.js offers a rich ecosystem of libraries and frameworks, enabling developers to handle network requests, interact with databases, and perform various server-side operations efficiently.

The MERN stack combines the power of MongoDB's flexible and scalable data storage, Express.js' simplicity and flexibility for building web applications, React.js' efficient UI rendering and state management, and Node.js' server-side capabilities. This combination allows developers to build end-to-end JavaScript-based web applications seamlessly, from the server-side logic to the user interface.
 Overall, the MERN stack provides a robust and modern web development environment, enabling developers to create feature-rich and scalable applications efficiently. It has gained popularity among developers due to its simplicity, flexibility, and the ability to build real-time, interactive web applications.
CHAPTER 2 : SYSTEM DESIGN
2.1 Architecture
The major project on Movie Ticket Booking System using the MERN stack follows a client-server architecture, where the frontend and backend components work together to provide a seamless user experience. Here's an overview of the architecture:
Client-Side (Frontend) Architecture:
The frontend of the Movie Ticket Booking System is developed using React.js, a popular JavaScript library for building user interfaces. The frontend is responsible for presenting the user interface, handling user interactions, and making requests to the backend APIs.
Server-Side (Backend) Architecture:
 The backend of the Movie Ticket Booking System is implemented using Node.js and Express.js, which provide a scalable and efficient server-side framework. The backend is responsible for handling client requests, performing business logic, interacting with the database, and returning appropriate responses.

2.2 Database Design
The database design for the Movie Ticket Booking System using the MERN stack involves modeling the entities and their relationships to efficiently store and retrieve movie data, user information, showtimes, and booking details. Here's an overview of the database design:
1. Users Collection: The Users collection stores user information, including user credentials and personal details. Each document in the Users collection represents a user registered in the system. Example fields in the Users collection may include:
· _id: A unique identifier for each user document.
· name: User's full name.
· email: User's email address.
· password: Encrypted password for authentication.
· createdAt: Timestamp for when the user account was created.

2. Movies Collection: The Movies collection stores information about the available movies, including title, genre, language, synopsis, and other relevant details. Each document in the Movies collection represents a movie listing. Example fields in the Movies collection may include:
· _id: A unique identifier for each movie document.
· title: The title of the movie.
· genre: The genre(s) of the movie.
· language: The language in which the movie is released.
· synopsis: A brief summary of the movie's plot.
· releaseDate: The release date of the movie.
· posterURL: URL of the movie's poster image.

3. Showtimes Collection: The Showtimes collection stores information about the available showtimes for each movie. It includes details such as the movie's ID, showtime date and time, theater details, and the availability of seats. Example fields in the Showtimes collection may include:
· _id: A unique identifier for each showtime document.
· movieId: The ID of the movie associated with the showtime.
· dateTime: The date and time of the showtime.
· theater: The name or ID of the theater where the movie is screened.
· seatsAvailable: The number of available seats for the showtime.
· seatsBooked: An array of seat IDs already booked for the showtime.

4. Bookings Collection: The Bookings collection stores the details of user bookings, including the user ID, showtime ID, booked seats, and payment information. Example fields in the Bookings collection may include:
· _id: A unique identifier for each booking document.
· userId: The ID of the user who made the booking.
· showtimeId: The ID of the showtime for which the booking is made.
· seatsBooked: An array of seat IDs booked by the user.
· paymentStatus: The status of the payment (e.g., paid, pending, refunded).
· bookingDate: The timestamp when the booking was made.
By structuring the database with these collections and their respective fields, the Movie Ticket Booking System can efficiently store and retrieve information related to movies, showtimes, user bookings, and user details. The database design should be flexible enough to accommodate future enhancements, such as adding additional movie details or supporting multiple theater locations.

CHAPTER 3 : BACKEND DEVELOPMENT
3.1 Setting Up Node.js and Express.js:
1. Install Node.js:
· Visit the official Node.js website (https://nodejs.org) and download the appropriate installer for your operating system.
· Run the installer and follow the instructions to install Node.js.
· After installation, open a terminal or command prompt and verify that Node.js and npm (Node Package Manager) are installed by running the following commands:
[image:]
Fig 3-1
2. Initialize the Project:
· Create a new project directory for your Movie Ticket Booking System.
· Open a terminal or command prompt, navigate to the project directory, and run the following command to initialize a new Node.js project:
[image:]
Fig 3-2
· Follow the prompts to provide information about your project (you can press Enter to accept the default values).

3. Install Express.js:
· In the terminal or command prompt, ensure you are in the project directory.
· Run the following command to install Express.js as a dependency for your project:
[image:]
Fig 3-3

· This will download and install Express.js and its dependencies in the node_modules directory of your project.

4. Create the Express.js Server:
· Create a new JavaScript file (e.g., server.js) in your project directory.
· Open server.js in a text editor and import the Express.js module by adding the following code at the top of the file:
[image:]
Fig 3-4
· Create an instance of the Express.js application by adding the following code
[image:]
Fig 3-5
· Define routes and middleware to handle requests and perform necessary operations. For example, you can create a route to handle movie search by adding the following code:
[image:]
Fig 3-6
· Finally, start the Express.js server by adding the following code at the end of the file:
[image:]
Fig 3-7
3.2 Designing RESTful API’s

When designing RESTful APIs in the MERN stack for a movie ticket booking application, you need to consider the different resources involved in the system and the actions that can be performed on those resources. Here's an example of how you can design the APIs:

1. User Registration and Authentication:
· POST /api/users/register - Register a new user.
· POST /api/users/login - Log in an existing user and obtain an authentication token.
· GET /api/users/me - Get the currently logged-in user's details.
2. Movies:
· GET /api/movies - Get a list of all movies.
· GET /api/movies/:id - Get details of a specific movie.
· POST /api/movies - Create a new movie (admin-only).
· PUT /api/movies/:id - Update details of a specific movie (admin-only).
· DELETE /api/movies/:id - Delete a specific movie (admin-only).
3. Theaters:
· GET /api/theaters - Get a list of all theaters.
· GET /api/theaters/:id - Get details of a specific theater.
· POST /api/theaters - Create a new theater (admin-only).
· PUT /api/theaters/:id - Update details of a specific theater (admin-only).
· DELETE /api/theaters/:id - Delete a specific theater (admin-only).
4. Shows:
· GET /api/shows - Get a list of all shows.
· GET /api/shows/:id - Get details of a specific show.
· POST /api/shows - Create a new show (admin-only).
· PUT /api/shows/:id - Update details of a specific show (admin-only).
· DELETE /api/shows/:id - Delete a specific show (admin-only).
5. Bookings:
· POST /api/bookings - Create a new booking.
· GET /api/bookings/:id - Get details of a specific booking.
· PUT /api/bookings/:id - Update details of a specific booking.
· DELETE /api/bookings/:id - Delete a specific booking dmin-only).

3.3 Implementing User Authentication
 To implement user authentication we can follow these steps:
1. User Registration:
· Create a user model/schema to store user information (e.g., username, email, password) in your MongoDB database.
· Create an API endpoint (POST /api/users/register) to handle user registration
· In the backend, validate the incoming request data and hash the user's password for security.
· Save the user information in the database.
· Return a success response or an appropriate error message if registration fails.
2. User Login:
· Create an API endpoint (POST /api/users/login) to handle user login.
· Validate the incoming request data (username/email and password).
· Check if the user exists in the database based on the provided credentials.
· If the credentials are valid, generate a JSON Web Token (JWT) to authenticate the user. Return the JWT token as a response to the client.
3. Protecting Routes:
· In your server middleware, create an authentication middleware that verifies the JWT token.
· Apply the authentication middleware to the routes that require authentication.
· If the token is valid, allow the request to proceed; otherwise, return an authentication error.
· You can extract the user information from the token payload and attach it to the request object for further processing.
4. User Profile and Authorization:
· Create an API endpoint (GET /api/users/me) to fetch the user's profile information.
· Use the authentication middleware to protect this route, ensuring only authenticated users can access it.
· Extract the user information from the token and retrieve the corresponding user details from the database.
· Return the user profile information in the response.
5. Logout (optional):
· If desired, create an API endpoint (POST /api/users/logout) to handle user logout.
· On the client-side, delete the JWT token stored in the client (e.g., localStorage, cookies).

CHAPTER 4 : FRONTENED DEVELOPMENT
4.1 Building a React.js Application
To build a React.js application for a movie booking system, we can follow these steps:
1. Set Up the Project:
· Create a new React.js project using ‘create-react-app’ or any other preferred method.
· Set up the necessary development environment, including Node.js and npm.
2. Design the User Interface:
· Identify the key features and pages of the movie booking system, such as movie listing, showtimes, seat selection, booking confirmation, etc.
· Sketch out the UI wireframes and design the user interface using tools like Figma or Adobe XD.
· Break down the UI into reusable components and plan the component hierarchy.
3. Create React Components:
· Set up the folder structure for your components, including folders for pages, shared components, and utility functions.
· Start building the React components based on the wireframes and component hierarchy.
· Implement each component's logic and functionality, including state management, event handling, and data fetching from APIs.
4. Implement Routing:
· Install React Router library to handle client-side routing in your application (npm install react-router-dom).
· Define routes for each page or feature of the movie booking system using the <Route> component.
· Set up navigation between routes using the <Link> component.

5. Connect to Backend APIs:
· Identify the APIs created for the movie booking system (as discussed in previous sections).
· Use libraries like axios or fetch to make HTTP requests from your React components.
· Create functions or hooks to handle API calls, manage data retrieval and update state accordingly.
6. User Authentication and Authorization:
· Implement the user registration and login forms.
· Connect these forms to the corresponding backend API endpoints for authentication.
· Handle user sessions, store authentication tokens securely, and handle authorization for protected routes.
7. Integrate Third-Party Libraries:
· Utilize popular libraries for UI components and styling, such as Material-UI, Bootstrap, or Tailwind CSS.
· Add form validation using libraries like Formik or Yup.
· Use state management libraries like Redux or React Context API for global state management if needed.
8. Implement Booking Flow:
· Create components for movie listing, showtimes, seat selection, and booking confirmation.
· Fetch movie data from the backend API and display it in the appropriate components.
· Allow users to select movie, showtime, and seats and update the booking details accordingly.
· Handle the booking process by connecting to the backend API endpoint for creating bookings.
9. Test and Debug:
· Write unit tests for critical components and functionality using testing libraries like Jest and React Testing Library.
· Test the application in different scenarios and devices to ensure compatibility and responsiveness.
· Debug and fix any issues or errors that arise during testing.
10. Deployment:
· Build the production-ready version of your React application (npm run build).
· Choose a hosting platform like Netlify, Vercel, or Heroku to deploy your application.
· Follow the deployment instructions provided by the hosting platform to publish your application.

Code Snippets
Admin.js
[image:]

2) Booking.js
[image:]

3) Movie.js
[image:]

User.js
[image:]

Admin Control
[image:]

[image:]
[image:]

Screenshots
1) Login Page
[image:]
Fig 6-1
2) Sign up Page

[image:]
Fig 6-2

3) Home Page
[image:]
Fig 6-3

4) Scrolling Page
[image:]
Fig 6-4

5) Search Page
[image:] Fig 6-5

FUTURE SCOPE
The future scope of a movie ticket booking project implemented using the MERN stack (MongoDB, Express.js, React.js, Node.js) can include several enhancements and additional features. Here are some potential areas of expansion and improvement for our project
· Advanced Search and Filtering:
Implement more advanced search and filtering options to allow users to find movies based on specific criteria such as genre, language, cast, release date, etc.
· Recommendation Engine:
Develop a recommendation engine that suggests movies to users based on their previous bookings, ratings, and preferences.
· Ratings and Reviews:
Add a feature for users to rate and review movies they have watched.
· Seat Selection Enhancement:
Improve the seat selection process by adding features such as selecting multiple seats, choosing specific seat categories (e.g., VIP, wheelchair-accessible), and displaying seat availability in real-time.
· Mobile Application:
· Extend the movie booking system to a mobile application for iOS and Android platforms.
· Integration with Payment Gateways:
· Incorporate popular payment gateways to allow users to make secure online payments for movie bookings.
· Loyalty and Rewards Program:
Implement a loyalty program that rewards users for their bookings with points, discounts, or exclusive offers.
· Analytics and Reporting:
Implement analytics and reporting features to track user behavior, booking patterns, and movie popularity.
· Multi-Language Support:
· Add support for multiple languages to cater to a broader user base.

2

image2.png
node -v

image3.png
npm init

image4.png
npm install express

image5.png
const express = requizre('express’);

image6.png
const app = express();

image7.png
app.get(’ /movies’, (zeq, Tes) => {

// Handle movie search logic here

zes.json({ message: 'Movie seazch endpoint' 1);
N

image8.png
const port = process.env.PORT || 3000;
app.listen(port, () => {

console.log(Server is running on port ${port}’);
N

image9.png
VN n W e

10
11
12
13
14
15
16
17
18
19
20
21
22

import mongoose from ‘mongoose’;

const adminSchema = new mongoose. Schema({

email: {
type: String,
unique: true,
required: true,
1
passuord: {
type: String,
required: true,
minLength: 6,
1
addedMovies: [
{
type: mongoose. Types.Objectld,
ref: ‘Movie',
3
1,
s

export default mongoose.model(’Admin’, adminSchema);

image10.png
VN n W e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import mongoose from ‘mongoose’;

const bookingSchema = new mongoose.Schema ({
movie: {
type: mongoose.Types.ObjectTd,
ref: "Movie',

required: true,

1
date: {
type: Date,
required: true,
1

seathumber: {
type: Number,
required: true,
1
user: {
type: mongoose. Types.ObjectId,
ref: User',
required: true,
1
s

export default mongoose.model(Booking', bookingSchema);

image11.png
VN n W e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import mongoose from ‘mongoose’;

const movieSchema = new mongoose. Schema({
title: {

typ:

required: true,

String,

1
description: {
type: String,
required: true,
1
actors: [{ type: String, required: true }],
releaseDate: {
type: Date,
required: true,
1
posterUrl: {
typ
required: true,

String,

1
featured: {
type: Boolean,

b

bookings: [{ type: mongoose.Types.Objectld, ref: 'Booking' }],

admin: {
type: mongoose. Types.ObjectId,
ref: ‘Admin’,
required: true,
1
s

export default mongoose.model(Movie', movieSchema);

image12.png
[R

10
11
12
13
14
15
16
17
18
19
20
21
22

import mongoose, { model, mongo } from 'mongoose’;

const Schema = mongoose.Schema;
const userSchema = new Schema({
name: {
type: String,

required: true,

type: String,
required: true,
unique: true,
1
passuord: {
type: String,
required: true,
minLength: 6,
1
bookings: [{ type: mongoose.Types.Objectld, ref: 'Booking' }1,
s

export default mongoose.model('User’, userSchema);

image13.png
VN n W e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

import Admin from °../models/Admin’;
import berptjs from ‘beryptys’;

import jwt from ' jsonwebtoken';

export const addAdmin = async (req, res, next) => {
const { email, password } - req.body;
if (lemail & email.trim()

return res.status(422).json({ message: 'Tnvalid Inputs’ });

& !password && password.trim()

let existingAdmin;
try {

existingAdmin = await Admin.findOne({ email });
} catch (err) {

return console.log(err);

if (existingAdmin) {

return res.status(500).json({ message: 'Admin already exists’ });

let admin;
const hashedPassword = bcrptjs.hashSync(password);
try {
admin = new Admin({ email, password: hashedPassword });
admin = auait admin.save();
} catch (err) {

return console.log(err);

if (ladmin) {
return res.status(500).json({ message: ‘Unable to store admin’ });

}

return res.status(201).json({ admin });

image14.png
36
37
38
39
20
a1
a2
a3

a5
a6
a7
a8
a9
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72

export const adminlogin = async (req, res, next) => {
const { email, password } - req.body;
if (lemail & email.trim()

return res.status(422).json({ message: 'Tnvalid Inputs’ });

& !password && password.trim()

let existingAdmin;
try {
existingAdnin = await Admin.findOne({ email });
} catch (err) {
return console.log(err);
¥
if (lexistingAdmin) {
return res.status(400).json({ message: 'Admin noy found’ });
¥
const isPasswordCorrect = berptjs. compareSync(
password,
existingAdnin.passuord

)5

if (!isPasswordCorrect) {
return res.status(400).json({ message: 'Incorrect Password’ });

¥

const token = jut.sign({ id: existingAdmin._id }, process.env.SECRET_KEY, {
expiresIn: '7d",

s

return res
.status(200)
.json({ message: ‘Authentication Complete’, token, id: existingAdmin._id });

¥

export const getAdmins = async (req, res, next) => {
let admins;
try {
admins - auait Admin.find();

image15.png
73
74
75
76
77
78
79
80

} catch (err) {
return console.log(err);

¥

if (ladmins) {
return res.status(50@).json({ message: 'Internal Server Error’ });

}

return res.status(200).json({ admins });

image16.jpeg
Email

image17.jpeg
Name

Email

SIGNUP

swi

image18.jpeg
] MOVIES ADMIN AUTH

NstRatverse

image19.jpeg
MOVIES ADMIN

Latest Releases

Pushpa The Kerala Story Bhola
Fri Dec 17 2021 Fri May 05 2023 Thu Mar 30 2023
BOOK BOOK BOOK BOOK

VIEW ALL MOVIES

image20.jpeg
MOVIES ADMIN

All Movies

Rocketry Pushpa The Kerala Story Bhola RRR

Fri Jul 012022 Fri Dec 17 2021 Fri May 05 2023 Thu Mar 30 2023 Fri Mar 25 2022

BOOK BOOK BOOK BOOK BOOK

image1.jpeg
N TECHNO INDIA NJR

INSTITUTE OF TECHNOLOGY

