A
PROJECT REPORT
on
“FLUTTER GROCERY APP”

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

Submitted by
Milind Gour (19ETCCS038)
Vaibhav Mishra (19ETCCS077)
Avani Gupta (19ETCCS005)

VIII semester, CSE
Under Guidance of
Aaditya Maheshwari
Head of Industry Project
CSE & Techno India NJR Institute of Technology

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY – 2023

A
PROJECT REPORT
on
“FLUTTER GROCERY APP”

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image:]

Session: - Jan-June 2023

Submitted by
Milind Gour(19ETCCS038)
Vaibhav Mishra(19ETCCS077)
Avani Gupta(19ETCCS005)

VIII semester, CSE

Under Guidance of
Nooruddin Bohra
ABAP Developer & Consultant
Assistant Manager at Diligent Global

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY – 2023

[image: A red sign with white text

Description automatically generated with medium confidence]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled FLUTTER GROCERY APP” by Milind Gour successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfillment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

Aaditya Maheshwari						Dr. Rimpy Bishnoi
Head of Industry Project					Head of Department	
CSE, Techno India NJR Institute of Technology		Dept. of CSE TINJRIT, Udaipur
Date...................... 						Date...................... 			

[image: A red sign with white text

Description automatically generated with medium confidence]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled FLUTTER GROCERY APP” by Vaibhav Mishra successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfillment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

Aaditya Maheshwari						Dr. Rimpy Bishnoi
Head of Industry Project					Head of Department	
CSE, Techno India NJR Institute of Technology		Dept. of CSE TINJRIT, Udaipur
Date...................... 						Date...................... 			

[image: A red sign with white text

Description automatically generated with medium confidence]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled FLUTTER GROCERY APP” by Avani Gupta successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfillment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

Aaditya Maheshwari						Dr. Rimpy Bishnoi
Head of Industry Project					Head of Department	
CSE, Techno India NJR Institute of Technology		Dept. of CSE TINJRIT, Udaipur
Date...................... 						Date...................... 			

[image:]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Examiner Certificate

This is to certify that the following student
Milind Gour, Vaibhav Mishra, Avani Gupta
of final year B.Tech. (Computer Science and Engineering), was examined for the project work titled
“FLUTTER GROCERY APP”
during the academic year 2022 – 2023 at Techno India NJR Institute of Technology, Udaipur

Remarks:
Date:

 Signature						Signature
 (Internal Examiner) 				(External Examiner)
Name :- ………………………				Name :- ………………………
Designation:- ………………..				Designation:- ………………..
Department: - ………………. 				Department: - ……………….
 Organization:- ……………… 			Organization:- …………
1

Preface
As the world progresses with technology, our daily routine of shopping has taken a new shift towards online shopping. Grocery shopping is no exception to this trend, making grocery apps an essential tool in the digital era. With convenience being the buzzword of modern times, a grocery shopping app in our mobile device can save us loads of time and energy. Whether it’s the need for fresh vegetables or daily essentials, a grocery app can handle all of it with just a few taps.

With this college report, we are introducing a new grocery app in Flutter, a UI toolkit for developing natively compiled applications across mobile, web, and desktop from a single codebase. The app aims to provide users with an easy and intuitive interface to order their groceries seamlessly.

We have designed this app with simplicity in mind so that any user can use it without any complications. The app provides a range of options for users to choose from, and it also has an efficient search function that helps users to find the exact product they are looking for in seconds.

In this report, we will discuss in detail the different features of the app, the technologies used in developing the app, and the challenges faced during the app development process. We hope that this report will be a helpful insight for anyone interested in developing similar grocery apps and for those who want to learn more about the Flutter framework.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001

ACKNOWLEDGMENT

We take this opportunity to record our sincere thanks to all who helped us to successfully complete this work. Firstly, We are grateful to our supervisor Nooruddin Bohra for his invaluable guidance and constant encouragement, support and most importantly for giving us the opportunity to carry out this work.
We would like to express our deepest sense of gratitude and humble regards to our
Head of Department Dr. Rimpy Bishnoi for giving invariable encouragement in our endeavours and providing necessary facility for the same. Also a sincere thanks to all faculty members of CSE, TINJRIT for their help in the project directly or indirectly.
Finally, We would like to thank my friends for their support and discussions that have proved very valuable for us. We are indebted to our parents for providing constant support, love and encouragement. We thank them for the sacrifices they made so that we could grow up in a learning environment. They have always stood by us in everything we have done, providing constant support, encouragement and love

Milind Gour (19ETCCS038)
Vaibhav Mishra (19ETCCS077)
Avani Gupta (19ETCCS005)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001

Contents

CHAPTER 1 : INTRODUCTION	11
1.1 Overview	11
1.2 Objectives	11
1.3 Scope	11
CHAPTER 2 : TECHNOLOGY OVERVIEW	12
2.1 FLUTTER FRAMEWORK	12
2.1.1 Introduction to Flutter	12
2.1.2 Key Features Of Flutter	12
2.2 Firebase Backend	16
2.2.1 Introduction To Firebase	16
2.2.2 Firebase Features	16
CHAPTER 3 : SYSTEM ARCHITECTURE	16
3.1 High-Level Architecture	16
3.2 User Interface	17
3.3 Database Management	18
3.4 User Authentication And Security	18
CHAPTER 4 : APP FEATURES AND FUNCTIONALITIES	22
4.1 User Registration And Login	22
4.2 Product Catalog	23
4.3 Shopping Cart	24
4.4 Payment Integration	24
4.5 Order Tracking	24
CHAPTER 5 : DEVELOPMENT PROCESS	25
5.1 Requirement Analysis	25
5.2 Design And Prototyping	29
5.3 Development	29
5.4 Testing And Quality Assurance	32
CHAPTER 6 : DEPLOYMENT AND MAINTENANCE	35
6.1 Deployment	35
6.2 App Store Submission	36
6.3 Maintenance And Updates	36
CHAPTER 7 : CONCLUSION	40
7.1 Summary Of Findings	40
7.2 Future Enhancements	43

[bookmark: _gjdgxs]LIST OF FIGURES
	Fig 1
	System Architecture…………..………………………………
	12

	Fig 2
	Database Management ………….……………………………
	14

	Fig 3
	Login & Registration Screen 1………………………………...
	18

	Fig 4
	Login & Registration Screen 2 ………………………………...
	19

	Fig 5
	Product Search and Catalogue ……………………………….
	20

	Fig 6
	Order Tracking ………………………………………………
	21

[bookmark: _30j0zll]CHAPTER 1: INTRODUCTION

1.1 [bookmark: _1fob9te]Overview

The Grocer App is a cutting-edge mobile application designed to streamline the grocery shopping experience for users. Built using the Flutter framework for cross-platform development and powered by Firebase as the backend infrastructure, the app aims to provide a convenient and efficient solution for customers to purchase groceries online.

1.2 [bookmark: _3znysh7]Objectives
1.3
The primary objectives of the Grocer App include:
- Enhancing the grocery shopping experience for users.
- Providing a user-friendly and intuitive interface.
- Ensuring secure and seamless transactions.
- Offering a wide range of products and categories.
- Enabling efficient order management and tracking.

[bookmark: _2et92p0]1.3 Scope

The scope of the Grocer App includes the following features and functionalities:
- User registration and login for personalized experiences.
- Comprehensive product catalog with search and filtering options.
- Shopping cart management for adding, removing, and updating items.
- Integration with payment gateways for secure and convenient transactions.
- Order tracking and delivery status updates for enhanced transparency.
- User feedback and reviews for quality assurance.
- Integration with Firebase for seamless data management and real-time updates.

[bookmark: _tyjcwt]CHAPTER 2: TECHNOLOGY OVERVIEW

[bookmark: _3dy6vkm]2.1 FLUTTER FRAMEWORK

[bookmark: _1t3h5sf]2.1.1 Introduction to Flutter

Flutter is an open-source UI software development kit (SDK) developed by Google. It allows developers to build high-performance, cross-platform applications using a single codebase. Flutter utilizes a reactive framework and provides a rich set of customizable widgets, enabling developers to create visually appealing and responsive user interfaces.

[bookmark: _4d34og8]2.1.2 Key Features Of Flutter

Some of the key features of Flutter include:
- Hot reload: Instantly see the changes made in the code without restarting the app.
- Expressive and customizable widgets: Flutter offers a wide range of pre-built widgets and allows developers to create custom widgets as per their requirements.
- Fast rendering: Flutter's rendering engine enables smooth and fast performance on multiple platforms.
- Native performance: Flutter apps are compiled into native code, resulting in excellent performance on both iOS and Android platforms.
- Access to platform-specific APIs: Developers can access platform-specific features and APIs directly from Flutter, allowing seamless integration with device capabilities. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _2s8eyo1]2.2 Firebase Backend

[bookmark: _17dp8vu]2.2.1 Introduction To Firebase

Firebase is a comprehensive development platform provided by Google. It offers a range of backend services and tools that simplify the development process and enhance app functionality. Firebase provides features such as real-time database, authentication, cloud storage, cloud functions, and analytics.

[bookmark: _3rdcrjn]2.2.2 Firebase Features

Key features of Firebase include:
- Firebase Authentication: Enables user authentication and authorization using various methods such as email/password, social login, and phone number authentication.
- Cloud Firestore: A flexible and scalable NoSQL database for storing and syncing app data in real-time.
- Firebase Cloud Messaging: Allows sending push notifications to users' devices.
- Firebase Hosting: Provides secure and reliable hosting for web apps.
- Firebase Analytics: Offers powerful analytics capabilities to gain insights into user behavior and app performance.

[bookmark: _26in1rg]CHAPTER 3: SYSTEM ARCHITECTURE

[bookmark: _lnxbz9]3.1 High-Level Architecture

The Grocer App follows a client-server architecture, with the Flutter frontend acting as the client and Firebase serving as the backend infrastructure. The high-level architecture includes the following components:
- User Interface: The Flutter app responsible for providing a seamless and intuitive user experience.
- Firebase SDKs: Software development kits provided by Firebase to interact with the backend services, including Firebase Authentication, Cloud Firestore, and Firebase Cloud Messaging.
- Database: Firebase Cloud Firestore serves as the database for storing product information, user data, and order details.
- Authentication: Firebase Authentication handles user registration, login, and authentication processes.
- Payment Gateway Integration: The app integrates with third-party payment gateways to enable secure and convenient payment transactions.
- Order Management: The app utilizes Firebase Cloud Firestore to manage user orders, including order details, status updates, and delivery tracking
.
[image:]
Figure 1 : System Architecture

[bookmark: _35nkun2]3.2 User Interface

The user interface of the Grocer App is designed to provide a seamless and visually appealing experience for users. Flutter's widget library offers a wide range of pre-built UI components that can be customized to match the app's branding and design requirements. The user interface includes the following screens and components:
- Login and registration screens: Allow users to create an account or log in using their credentials.
- Home screen: Displays featured products, categories, and promotions.
- Product catalog: Presents a comprehensive list of products with details such as name, price, and availability.
- Shopping cart: Provides functionality to add items, update quantities, and proceed to checkout.
- Order tracking screen: Allows users to track the status and delivery updates of their orders.
- Profile screen: Enables users to manage their account information, view order history, and provide feedback.

[bookmark: _1ksv4uv]3.3 Database Management

Firebase Cloud Firestore is used as the database for the Grocer App. Cloud Firestore is a flexible, scalable, and real-time NoSQL database that allows seamless data synchronization across devices. It offers the capability to store structured data in documents organized into collections. The database is structured to store information such as:
- User profiles: Including personal details, preferences, and order history.
- Product catalog: Storing details such as product name, description, price, and availability.
- Order details: Recording order information, including items, quantities, and delivery details.
- Feedback and reviews: Capturing user feedback and reviews for products and overall app experience.
[image:]

Figure 2 : Database Management then & now

[bookmark: _44sinio]3.4 User Authentication And Security

Firebase Authentication is used to handle user authentication and security in the Grocer App. It provides a secure and reliable way to authenticate users and manage their access to app resources. Firebase Authentication supports various authentication methods, including email/password, social logins (Google, Facebook, etc.), and phone number authentication. Additionally, security measures such as password hashing and encryption ensure the protection of user data. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _2jxsxqh]CHAPTER 4: APP FEATURES AND FUNCTIONALITIES

[bookmark: _z337ya]4.1 User Registration And Login

The Grocer App allows users to register for an account or log in using their existing credentials. The registration process collects necessary information such as name, email address, and phone number. Firebase Authentication handles user registration, securely storing user credentials, and providing a seamless login experience for returning users.
[image: A picture containing text, screenshot, software, web page

Description automatically generated]
Figure 3 : Login & Registration Screen 1

[image:]

Figure 4 : Login & Registration Screen 2

[bookmark: _3j2qqm3]4.2 Product Catalogue

The app features a comprehensive product catalog that allows users to browse and search for groceries. The catalog is stored in Firebase Cloud Firestore and provides information about each product, including its name, description, price, and availability. Users can search for products based on keywords, apply filters, and sort the results according to their preferences.
[image: C:\Users\vaibhav mishra\Downloads\158145814-58009b8d-2e78-4dc9-b563-c3d73ec1539b.jpeg]
Figure 5 : Product Search and Catalogue

[bookmark: _1y810tw]4.3 Shopping Cart

The shopping cart functionality enables users to add desired items, update quantities, and proceed to checkout. The shopping cart data is stored in Firebase Cloud Firestore, allowing users to access their cart from different devices. Users can review the items in their cart, modify quantities, and remove items if needed.

[bookmark: _4i7ojhp]4.4 Payment Integration	

To facilitate secure and convenient transactions, the Grocer App integrates with third-party payment gateways. Users can choose from various payment options, such as credit cards, digital wallets, or UPI (Unified Payment Interface). The app securely processes payment transactions and provides confirmation receipts to users.

[bookmark: _2xcytpi]4.5 Order Tracking

The order tracking feature enables users to monitor the status and progress of their grocery orders in real-time. Users receive notifications and updates regarding order confirmation, dispatch, and delivery status. The integration of Firebase Cloud Messaging enables the app to send timely notifications and keep users informed about their orders.
[image:]
Figure 6 : Order Tracking
[bookmark: _1ci93xb]CHAPTER 5: DEVELOPMENT PROCESS

[bookmark: _3whwml4]5.1 Requirement Analysis
flutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _2bn6wsx]5.2 Design And Prototyping

During the design and prototyping phase, the visual design and user experience of the Grocer App are defined. Wireframes, mockups, and interactive prototypes are created to iterate and refine the app's design before development. This phase also involves establishing the branding guidelines and creating a consistent user interface throughout the app.

[bookmark: _qsh70q]5.3 Development

The development phase involves implementing the Grocer App using the Flutter framework and integrating it with Firebase as the backend infrastructure. The development process includes tasks such as project setup, UI implementation, backend integration with Firebase, database management, and API integrations for payment gateways and other third-party services. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _3as4poj]5.4 Testing And Quality Assurance

Thorough testing and quality assurance are crucial to ensure the app functions as intended and provides a seamless user experience. The testing process includes unit testing, integration testing, and user acceptance testing. Bugs and issues are identified, reported, and resolved to ensure the app's stability, security, and performance. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _1pxezwc]CHAPTER 6: DEPLOYMENT AND MAINTENANCE

[bookmark: _49x2ik5]6.1 Deployment

Once the development and testing phases are completed, the Grocer App is ready for deployment. The app can be deployed to various platforms, including iOS and Android, using the respective app stores. The necessary app store guidelines and requirements are followed to ensure a successful submission and approval process.

[bookmark: _2p2csry]6.2 App Store Submission

To make the Grocer App available to users, it is submitted to the respective app stores, such as the Apple App Store and Google Play Store. The submission process involves providing necessary app details, app descriptions, screenshots, and icons. Compliance with app store guidelines and policies is ensured to increase the chances of successful approval.

[bookmark: _147n2zr]6.3 Maintenance And Updates

After deployment, regular maintenance and updates are necessary to keep the Grocer App running smoothly and up to date. Maintenance activities include bug fixes, performance optimizations, and security enhancements. User feedback and analytics data are collected to identify areas of improvement and implement new features and functionalities. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _3o7alnk]
CHAPTER 7: CONCLUSION

[bookmark: _23ckvvd]7.1 Summary Of Findings

The Grocer App, built using Flutter and powered by Firebase as the backend, offers a seamless and convenient grocery shopping experience for users. The app provides a user-friendly interface, comprehensive product catalog, efficient order management, and secure payment transactions. lutter is a multi-paradigm programming environment. Many programming techniques developed over the past few decades are used in Flutter. We use each one where we believe the strengths of the technique make it particularly well-suited. In no particular order:

Composition
The primary paradigm used by Flutter is that of using small objects with narrow scopes of behavior, composed together to obtain more complicated effects, sometimes called aggressive composition. Most widgets in the Flutter widget library are built in this way. For example, the Material TextButton class is built using an IconTheme, an InkWell, a Padding, a Center, a Material, an AnimatedDefaultTextStyle, and a ConstrainedBox. The InkWell is built using a GestureDetector. The Material is built using an AnimatedDefaultTextStyle, a NotificationListener, and an AnimatedPhysicalModel. And so on. It’s widgets all the way down.
Functional programming
Entire applications can be built with only StatelessWidgets, which are essentially functions that describe how arguments map to other functions, bottoming out in primitives that compute layouts or paint graphics. (Such applications can’t easily have state, so are typically non-interactive.) For example, the Icon widget is essentially a function that maps its arguments (color, icon, size) into layout primitives. Additionally, heavy use is made of immutable data structures, including the entire Widget class hierarchy as well as numerous supporting classes such as Rect and TextStyle. On a smaller scale, Dart’s Iterable API, which makes heavy use of the functional style (map, reduce, where, etc), is frequently used to process lists of values in the framework.
Event-driven programming
User interactions are represented by event objects that are dispatched to callbacks registered with event handlers. Screen updates are triggered by a similar callback mechanism. The Listenable class, which is used as the basis of the animation system, formalizes a subscription model for events with multiple listeners.
Class-based object-oriented programming
Most of the APIs of the framework are built using classes with inheritance. We use an approach whereby we define very high-level APIs in our base classes, then specialize them iteratively in subclasses. For example, our render objects have a base class (RenderObject) that is agnostic regarding the coordinate system, and then we have a subclass (RenderBox) that introduces the opinion that the geometry should be based on the Cartesian coordinate system (x/width and y/height).
Prototype-based object-oriented programming
The ScrollPhysics class chains instances to compose the physics that apply to scrolling dynamically at runtime. This lets the system compose, for example, paging physics with platform-specific physics, without the platform having to be selected at compile time.
Imperative programming
Straightforward imperative programming, usually paired with state encapsulated within an object, is used where it provides the most intuitive solution. For example, tests are written in an imperative style, first describing the situation under test, then listing the invariants that the test must match, then advancing the clock or inserting events as necessary for the test.
Reactive programming
The widget and element trees are sometimes described as reactive, because new inputs provided in a widget’s constructor are immediately propagated as changes to lower-level widgets by the widget’s build method, and changes made in the lower widgets (for example, in response to user input) propagate back up the tree via event handlers. Aspects of both functional-reactive and imperative-reactive are present in the framework, depending on the needs of the widgets. Widgets with build methods that consist of just an expression describing how the widget reacts to changes in its configuration are functional reactive widgets (for example, the Material Divider class). Widgets whose build methods construct a list of children over several statements, describing how the widget reacts to changes in its configuration, are imperative reactive widgets (for example, the Chip class).
Declarative programming
The build methods of widgets are often a single expression with multiple levels of nested constructors, written using a strictly declarative subset of Dart. Such nested expressions could be mechanically transformed to or from any suitably expressive markup language. For example, the UserAccountsDrawerHeader widget has a long build method (20+ lines), consisting of a single nested expression. This can also be combined with the imperative style to build UIs that would be harder to describe in a pure-declarative approach.
Generic programming
Types can be used to help developers catch programming errors early. The Flutter framework uses generic programming to help in this regard. For example, the State class is parameterized in terms of the type of its associated widget, so that the Dart analyzer can catch mismatches of states and widgets. Similarly, the GlobalKey class takes a type parameter so that it can access a remote widget’s state in a type-safe manner (using runtime checking), the Route interface is parameterized with the type that it is expected to use when popped, and collections such as Lists, Maps, and Sets are all parameterized so that mismatched elements can be caught early either during analysis or at runtime during debugging.
Concurrent programming
Flutter makes heavy use of Futures and other asynchronous APIs. For example, the animation system reports when an animation is finished by completing a future. The image loading system similarly uses futures to report when a load is complete.
Constraint programming
The layout system in Flutter uses a weak form of constraint programming to determine the geometry of a scene. Constraints (for example, for cartesian boxes, a minimum and maximum width and a minimum and maximum height) are passed from parent to child, and the child selects a resulting geometry (for example, for cartesian boxes, a size, specifically a width and a height) that fulfills those constraints. By using this technique, Flutter can usually lay out an entire scene with a single pass.

[bookmark: _ihv636]7.2 Future Enhancements

To further enhance the Grocer App, future enhancements could include:
- Integration with delivery tracking APIs for real-time delivery updates.
- Personalized recommendations based on user preferences and purchase history.
- Loyalty programs and rewards for customer retention.
- Social sharing and referral features to expand the user base.
- Integration with chat support for instant customer assistance.

7.3 Reference

· Websites:

• Flutter Dev - https://docs.flutter.dev/
• Flutter Cookbook– https://docs.flutter.dev/cookbook
• Widgets UI catalogue - https://docs.flutter.dev/ui/widgets

image2.png

image3.png

image4.png

image6.png

image7.png

image8.png

image5.png

image1.png

