A
PROJECT REPORT
on
Society Facility Management System

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

Submitted by
Hardik Joshi (19ETCCS022)
Vaibhav Bhatnagar (19ETCCS076)
Hussain (19ETCCS028)
8th Sem, Computer Science
Under Guidance of
Nooruddin Bohra
Assistant Manager
Development, Diligent Global

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY - 2023

2

A
PROJECT REPORT
on
Society Facility Management System

Submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF TECHNOLOGY

[image: C:\Users\TechnoNJR\Downloads\Techno Logo.jpg]

Session: - Jan-June 2023

Submitted by
Hardik Joshi (19ETCCS022)
Vaibhav Bhatnagar (19ETCCS076)
Hussain (19ETCCS028)>
8th Sem, Computer Science

Under Guidance of
Nooruddin Bohra
Assistant Manager
Development, Diligent Global

								

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001
MAY - 2023

[image:]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Certificate

This is to certify that project work titled “SOCIETY FACILITY MANAGEMENT SYSTEM” by Hardik Joshi, Vaibhav Bhatnagar, Hussain was successfully carried out in the Department of Computer Science and Engineering, TINJRIT and the report is approved for submission in the partial fulfilment of the requirements for award of degree of Bachelor of Technology in Computer Science and Engineering.

[bookmark: _Hlk136014663]Nooruddin Bohra 					Dr. Rimpy Bishnoi
Assistant Manager					Head of Department	
Development | Diligent Global			Dept. of CSE TINJRIT, Udaipur
Date...................... 					Date...................... 			

[image:]
Department of Computer Science and Engineering
Techno India NJR Institute of Technology, Udaipur-313001

Examiner Certificate

This is to certify that the following student
Hardik Joshi,
Vaibhav Bhatnagar,
Hussain
of final year B.Tech. (Computer Science and Engineering), was examined for the project work titled
“Society Facility Management System”
during the academic year 2022 – 2023 at Techno India NJR Institute of Technology, Udaipur

Remarks:
Date:

 Signature			 		Signature
(Internal Examiner) 	 (External Examiner)
Name :- ………………………				Name :- ………………………	
Designation:- ………………..				Designation:- ………………..	
Department: - ………………. 				Department: - ……………….
Organization:- ……………… 			Organization:- ………………

Preface

The Facility Management System (FMS) is a robust application developed to address the complex needs of managing and maintaining facilities efficiently. This system incorporates a range of modules and programs that collectively contribute to the seamless management of facilities, including service consumption tracking, invoice generation, and reporting.
In Chapter 1, we give an overview of the SAP System. Topics include ABAP programming, ABAP Workbench, domain, data elements, structures, table type and search helps. The chapter mainly focuses on most common features and terms used in SAP system.
Chapter 2 discusses the application facility management system database. What is database used for, how database schema plays its role in it. In addition, it describes each database table used in our facility management system. How TMGs plays a vital role in data entry. Validations and its types.
Chapter 3 presents the concept of module pool programming, how module pool provides the tools to create GUI for our application. How ALV is implemented in module pool for reporting. Use of Table control in taking data entries in program. Also discuss the two main programs of our facility management system. First program focuses on service consumption entry and generating report of consumption, while second program focuses on calculating amount based on consumption data and updates the ledger.
Chapter 4. After Updating the ledger, we need to generate the invoice to get payment from the society members. To generate our chapter mainly focuses on the Adobe form technology to create layouts of the invoice and display the member’s data and invoice amount from ledger. It gives the invoice in pdf format.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001

ACKNOWLEDGMENT

We take this opportunity to record our sincere thanks to all who helped us to successfully complete this work. Firstly, we are grateful to our supervisor Nooruddin Bohra for his invaluable guidance and constant encouragement, support and most importantly for giving us the opportunity to carry out this work.
We would like to express our deepest sense of gratitude and humble regards to our
[bookmark: _Hlk136012847][bookmark: _Hlk136012783]Head of Department Dr. Rimpy Bishnoi for giving invariable encouragement in our endeavours and providing necessary facility for the same. Also, a sincere thanks to all faculty members of CSE, TINJRIT for their help in the project directly or indirectly.
Finally, we would like to thank my friends for their support and discussions that have proved very valuable for us. We are indebted to our parents for providing constant support, love and encouragement. We thank them for the sacrifices they made so that we could grow up in a learning environment. They have always stood by us in everything we have done, providing constant support, encouragement and love

Hardik Joshi (19ETCCS022)
Vaibhav Bhatnagar (19ETCCS076)
Hussain (19ETCCS028)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR-313001

CONTENTS
	Abstract
	……………………………………………………………….
	i-v

	Contents
	……………………………………………………………….
	vi-viii

	List of Figures ……………………………………………………............
	 ix

	List of Abbreviations Used……………………………………………….
	x

	Chapter 1: Introduction to SAP

	1.1 What Is SAP ..1

	1.2 ABAP Programming Language ...2

	1.3 Features Of SAP ABAP ...3

	1.4 ABAP Workbench ...3

	1.5 Domain, Data Element, Search Help……………………………..5

	1.6 Structure ..5

	1.7 Database View ...8

	1.8 Table Type ..8

	1.9 Search Help ...9

	1.10 Lock Objects ..10

	1.11 T-Code…………………………………………………11

	Chapter 2: Building Database

	2.1 Project Briefing ...12

	2.2 Database Tables ...13

	2.3 TMG ...16

	2.4 Validations ...17

	

	Chapter 3: GUI Designing and Programming in Module Pool

	3.1 Introduction to Module Pool Designing19

	3.2 Purpose and Scope ...20

	3.3 Overview of Module Pool Programs22

	3.4 Screen Layout and Flow ..22

	3.5 Use of ALV In Module Pool23

	3.6 Table Control in Module Pool ...24

	3.7 Consumption Entry Functionality24

	3.8 Consumption Report Functionality24

	3.9 Overview of YT017MP_CREATE_LEDG Program25

	3.10 Ledger Update Functionality ..26

	

	Chapter 4: Invoice Generation Using Adobe Forms

	4.1 Adobe Form Interface ... 27

	4.2 Designing the Adobe Form ..27

	4.3 Data Binding And Processing ..27

	4.4 Printing And Output Options ...28

	4.5 Invoice Generation Process ...28

	4.6 Error Handling and Exception Handling29

	4.7 Advanced Features And Enhancements30

	4.8 Overview of Program YT017MP_ADOBE_INVOICE...31

	Appendix…………………………………………………….32

LIST OF FIGURES
	Figure 1.1
	SAP Login Screen
	1

	Figure 1.2
	SAP Easy Access
	2

	Figure 1.3
	Domain for Apartment Id
	5

	Figure 1.4
	Data Element for Apartment Id
	6

	Figure 1.5
	Search Help for Service Id
	9

	Figure 2.1
	Database Schema for Facility Management System
	13

	Figure 2.2
	Owner Master Table
	14

	Figure 3.1
	Screen Painter
	21

	Figure 3.2
	Service consumption entry using YT017MP_SRVC_CONSP
	24

	Figure 4.1
	Adobe form for invoice generation in layout editor
	28

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

List of Abbreviations/ Symbols
	SAP
	Systems, Applications & Products in Data Processing

	ABAP
	Advanced Business Application Programming

	ERP
	Enterprise Resource Planning

	T-Code
	Transaction Code

	TMG
	Table Maintenance Generator

	MVC
	Model View Controller

	ALV
	ABAP List Viewer

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

2

CHAPTER 1: INTRODUCTION TO SAP SYSTEM
1.1 What Is SAP
SAP, which stands for Systems, Applications, and Products in Data Processing, is a leading enterprise resource planning (ERP) software system used by businesses of all sizes and industries. SAP was founded in 1972 by five former IBM employees and has since grown to become one of the largest software companies in the world.
The main objective of SAP is to integrate various business functions and streamline processes within an organization. It provides a comprehensive suite of modules and applications that cover key areas such as finance, human resources, supply chain management, sales and distribution, manufacturing, and more. These modules work together to enable efficient data management, improve collaboration between departments, and enhance decision-making.
[image:]Figure 1.1: SAP Login Screen
One of the core strengths of SAP is its ability to handle complex business processes and large amounts of data. It offers a centralized database that serves as a single source of truth for the entire organization, ensuring data consistency and integrity across different functions. This allows companies to have a holistic view of their operations, make informed decisions, and respond quickly to changing market conditions.
[image:]Over the years, SAP has evolved from traditional on-premises installations to cloud-based solutions, providing greater flexibility, scalability, and accessibility. The company has also embraced emerging technologies such as artificial intelligence (AI), machine learning, Internet of Things (IOT), and analytics, integrating them into its software suite to drive innovation and digital transformation.
Figure 1.2: SAP Easy Access
In summary, SAP is a powerful ERP software system that helps businesses streamline operations, improve efficiency, and gain a competitive edge. With its comprehensive suite of modules, industry-specific solutions, and support for emerging technologies, SAP continues to play a significant role in driving digitalization and enabling organizations to adapt to the evolving business landscape.

1.2 ABAP Programming Language
ABAP (Advanced Business Application Programming) is a high-level programming language developed by SAP for developing business applications within the SAP ecosystem. It is specifically designed to meet the requirements of SAP systems and is primarily used for customizing, extending, and creating new functionalities in SAP applications.
ABAP is an event-driven language that allows developers to write programs that respond to user actions or system events. It offers a wide range of features and functionalities that enable efficient data processing, business logic implementation, and user interface development.

1.3 Features Of SAP ABAP
SAP (Systems, Applications, and Products) is an enterprise resource planning (ERP) software that integrates various business functions. ABAP (Advanced Business Application Programming) is the primary programming language used for developing and customizing SAP applications. Some key features of SAP and ABAP include:
Integration: SAP provides a centralized platform that integrates different business processes, departments, and data sources, enabling smooth communication and collaboration.
Customization: ABAP allows developers to tailor SAP applications to meet specific business requirements by creating custom reports, interfaces, enhancements, and workflows.
Data Management: SAP offers robust data management capabilities, including data storage, retrieval, manipulation, and reporting. ABAP provides extensive data handling functionalities and database access.
Business Logic: ABAP allows the implementation of complex business rules and logic, enabling automation and optimization of various processes.
Scalability: SAP systems are highly scalable, accommodating the needs of small businesses to large enterprises with multiple users and high transaction volumes.

1.4 ABAP Workbench
ABAP Workbench, also known as ABAP Development Workbench or ABAP Development Tools (ADT), is a comprehensive integrated development environment (IDE) provided by SAP for developing and maintaining ABAP-based applications. It is a set of tools and features within the SAP system that enables developers to create, modify, test, and manage ABAP programs.
Here are some key components and functionalities of ABAP Workbench:
1.	ABAP Editor: The ABAP Editor is the primary tool within ABAP Workbench for writing ABAP code. It provides syntax highlighting, code completion, and error checking, helping developers write clean and error-free programs. The editor also supports code templates and snippets, making code development more efficient.
2.	Repository Browser: The Repository Browser allows developers to navigate and explore the SAP system's repository objects, such as programs, function modules, tables, and data types. It provides a hierarchical view of objects, allowing developers to easily locate and access the required components.
3.	Object Navigator: The Object Navigator provides a consolidated view of all development objects related to a specific project or task. It helps developers manage and organize their work by displaying dependencies, relationships, and metadata of the objects. Developers can quickly jump between different objects and perform various operations, such as editing, activating, or transporting objects.
4.	Transport Organizer: The Transport Organizer is used for managing transports in the development landscape. It enables developers to package and transport their changes from one system to another, ensuring consistent and controlled deployment of ABAP objects across various environments.
5.	Debugger: The Debugger is a powerful tool within ABAP Workbench that allows developers to debug and analyse ABAP programs. It provides features such as breakpoints, watchpoints, variable inspection, and step-by-step program execution, helping developers identify and fix issues in their code.
6.	Performance Analysis: ABAP Workbench includes performance analysis tools that assist developers in optimizing the performance of ABAP programs. These tools allow developers to measure and analyse the execution time and resource consumption of programs, helping to identify performance bottlenecks and implement optimizations.
7.	Testing and Test Workbench: ABAP Workbench provides tools for creating and executing test cases for ABAP programs. The Test Workbench allows developers to define test data, perform unit testing, and track test results.
ABAP Workbench is an essential tool for ABAP developers, providing a rich set of features and functionalities for efficient and effective ABAP development. It promotes a structured and standardized approach to development, ensuring high-quality ABAP applications within the SAP ecosystem.

1.5 Domain, Data Element, Search Help
[image:]1.	Domain: A domain represents the technical characteristics and constraints of a data element. It defines the data type, length, and other
	 Figure 1.3: Domain for Apartment Id
attributes of a field. Domains provide a standardized way of defining and reusing data types within the SAP system. For example, a domain called "Material Number" can define the data type as alphanumeric with a length of 18 characters and can specify additional properties such as input checks, value ranges, and conversion routines.
2.	Data Element: A data element provides semantic meaning to a field or a set of fields in a database table or structure. It describes the business purpose or the content of the data. Data elements are associated with domains, linking the technical characteristics defined by the domain with the business semantics. They help ensure consistency and maintainability across different parts of the SAP system. For instance, a data element called "Customer ID" can be associated with a domain called "Character" to represent a unique identifier for customers.
Figure 1.4: D[image:]ata Element for Apartment Id
3.	Structures: Structures in ABAP are used to define a collection of related fields grouped together. They represent a complex data type that can contain other fields, including elementary fields or other structures. Structures provide a way to organize and store related data elements in a hierarchical manner. They are commonly used to define database tables, internal tables, and data transfer objects. For example, a structure called "Person" can contain fields like "First Name," "Last Name," "Address," and "Date of Birth," allowing for the storage and retrieval of multiple related fields as a unit.

1.6 Structure
In the context of SAP, a "structure" refers to a composite data type that allows you to group together related fields or elements into a single unit. It is similar to a record or a struct in programming languages. Structures are commonly used in SAP to define the layout and organization of data in various applications, such as data models, database tables, function modules, and more.
SAP structures can be created and defined using the ABAP (Advanced Business Application Programming) programming language. They provide a way to encapsulate related data elements, making it easier to organize and manipulate data within SAP systems. Here are some commonly used types of structures in SAP:
Transparent Structures: These structures are used to define the layout of database tables. Each field in the structure corresponds to a column in the table, and the structure defines the fields' names, data types, lengths, and other properties.
Include Structures: These structures are reusable structures that can be included in multiple transparent structures. They allow you to define a set of common fields and reuse them across multiple tables.
Data Structures: Data structures are used to define the layout of data objects in memory during program execution. They can hold temporary data or data retrieved from the database. Data structures are defined using the "DATA" statement in ABAP and can contain fields of various types.
Function Module Structures: Function modules are reusable components in SAP that encapsulate specific functionality. Function module structures define the parameters and return values for function modules, allowing them to exchange data with the calling program.
Internal Tables Structures: Internal tables are used to store and process tabular data within ABAP programs. Internal table structures define the structure of the table, including the names and data types of the columns. These structures are often used in conjunction with loop statements to process data rows.
Message Structures: Message structures are used in SAP to define the format and content of messages that are issued during program execution. They contain information such as message type, message class, message number, and message text.
These are some of the commonly used structure types in SAP. They provide a flexible way to organize and manage data within SAP systems, enabling developers to create robust and efficient applications.

1.7 Table Type
In SAP ABAP, table types define the structure and characteristics of database tables used to store data. There are several table types available:
Transparent Tables: These tables store application data and have a one-to-one correspondence with the physical database tables.
Cluster Tables: Cluster tables combine several transparent tables with similar key fields, optimizing data storage and retrieval.
Pool Tables: Pool tables are logical tables that contain data from several transparent tables with identical structures.
Packed Tables: Packed tables store data in a compressed format, reducing storage requirements.
Index Tables: Index tables contain frequently used search keys to accelerate data retrieval from other tables.

1.8 Database View
Database views in SAP ABAP are virtual tables that provide a logical representation of data from one or more underlying tables. Views allow users to retrieve and manipulate data without directly accessing the underlying tables. Some key features of database views include:
Data Abstraction: Views present a simplified and customized view of data, hiding the complexity of underlying table structures.
Data Security: Views can be used to restrict access to sensitive data by filtering or masking certain fields based on user roles and authorizations.
Joining Tables: Views enable the combination of data from multiple tables using join conditions, simplifying complex queries and reporting.
Aggregation and Calculations: Views can perform calculations, aggregations, and transformations on data, providing consolidated information.

1.9 Search Help
Search Help is a feature in SAP systems that provides assistance to users when entering values for input fields. It helps users find and select valid values by providing search options, value help, and input suggestions.
Here are some key points about Search Help:
Figure 1.5: [image:]Search Help for Service Id
1.	Purpose: The main purpose of Search Help is to enhance the user experience by simplifying data entry and ensuring data accuracy. It assists users in finding valid and relevant values for input fields, reducing manual errors and improving productivity.
2.	Search Help Types: SAP offers different types of Search-Helps to cater to various requirements. Some common types include Elementary Search Help, Collective Search Help, Match-code Search Help, and Database Search Help. Each type has its own characteristics and functionalities, such as providing a list of possible values, value range checks, or fuzzy search options.
3.	Value Selection: When a user triggers a Search Help for an input field, a dialog or a dropdown list is displayed with relevant values based on the search criteria. Users can select one or multiple values from the list to populate the input field.

1.10 Lock Objects
Lock objects in SAP are used to control and manage the concurrent access to shared resources, ensuring data integrity and preventing inconsistencies. They play a crucial role in maintaining data consistency when multiple users or processes attempt to access and modify the same data simultaneously.
Lock objects are defined in the Data Dictionary (SE11) and are associated with specific tables or data elements. They serve as a framework for managing locks on these objects, allowing developers to implement a robust locking mechanism.
When a lock object is activated, it generates a set of function modules that can be used to acquire and release locks on the associated data. These function modules provide various lock modes, such as exclusive (write) locks or shared (read) locks.
The lock object mechanism works as follows:
When a user or process wants to access a locked resource, it calls the appropriate function module of the lock object to request a lock.
The lock object checks the availability of the requested lock mode and grants the lock if it is available.
If the requested lock mode is not available, the system can either wait until the lock is released or return an error message, depending on the configuration.
Once a lock is acquired, other users or processes attempting to acquire a conflicting lock mode will either wait or be denied access until the lock is released.
After the user or process has finished working with the resource, it releases the lock using the corresponding function module of the lock object.
By using lock objects, SAP ensures that only one user or process can modify a locked resource at a time, preventing data corruption and maintaining data consistency across the system. It helps avoid conflicts and ensures that changes to shared data are performed in a controlled and orderly manner.
Lock objects are widely used in various SAP applications, including transaction processing, database updates, and data maintenance scenarios, to provide reliable and consistent access to shared resources in a multi-user environment.

1.11 T-Code
T-code, short for "Transaction Code," is a four-character code used in SAP systems to access specific functions or transactions quickly. Each T-code represents a unique task or process within the SAP software. Users can enter the T-code in the command field of the SAP Easy Access Menu or use the shortcut Ctrl+Shift+F1 to access the desired transaction directly. T-codes streamline the navigation process, making it easier to perform common tasks or execute complex processes within the SAP system.

CHAPTER 2: BUILDING DATABASE
2.1 Project Briefing
The primary objective of the Facility Management System is to provide organizations with a centralized platform to efficiently manage their facilities and associated resources. This system aims to automate and simplify various facility management tasks, leading to improved productivity, reduced costs, enhanced operational efficiency, and better utilization of available resources. By implementing this FMS, organizations can ensure a well-maintained and optimized working environment while focusing on their core business activities.

2.2 Database Tables
In SAP, database tables are containers that store structured data for different business processes and applications. They have predefined structures with columns representing data attributes and rows representing records. These tables are categorized into master data, transaction data, configuration, and log tables. They maintain relationships with other tables through primary and foreign keys, ensuring data integrity. SAP provides tools for table creation, maintenance, and data extraction, supporting efficient data management and analysis. Database tables are integral to organizing and retrieving data, enabling seamless integration across SAP modules.
Database Schema: A database schema is a logical structure that defines the organization, relationships, and constraints of a database system. It acts as a blueprint or roadmap for designing and creating a database. The schema defines the tables, columns, data types, relationships, and constraints that define the structure and behaviour of the data stored in the database.
[image:] Figure 2.1: Database Schema for Facility Management System
2.2.1 Apartment Master Table:
The apartment table serves as a central repository for apartment-related information. It includes attributes such as apartmentid (primary key), which uniquely identifies each apartment. This table stores details like apartment number, size, location, and other relevant information that describes the apartments in the system.

2.2.2 Owner Master Table:
The owner table contains information about the owners associated with the apartments in the system. It includes attributes like ownerid (primary key), which serves as a unique identifier for each owner. This table stores details such as owner name, contact information, and other relevant owner-related data.
Figure 2.2: Owner Master Table [image:]
2.2.3 Assignment Master Table:
The assignment table establishes the relationship between apartments and owners. It includes attributes like assignmentid (primary key), which uniquely identifies each assignment. This table also includes foreign keys, such as apartmentid and ownerid, which establish relationships with the apartment table and owner table, respectively. The assignment table stores information about the assignment of owners to specific apartments, including assignment dates, duration, and any additional details related to the assignment.

2.2.4 Service Master Table:
The service table captures information about the services provided in the apartment management system. It includes attributes like serviceid, which represents a unique identifier for each service. This table also contains details such as service name, description, and any other relevant information related to the services offered. The assignmentid is a foreign key that establishes a relationship between the service table and the assignment table.

2.2.5 Service Registration Table
The Service Registration Table is used to register services to assignment ids and track their current status. It includes columns such as period, year, assignment ID, service ID, and isactive. The period and year indicate the validity of the service registration, while the assignment ID and service ID are foreign keys referencing other tables. The isactive column indicates whether the service is currently active or not. The combination of period, year, assignment ID, and service ID forms the primary key, ensuring uniqueness. This table allows for efficient management and monitoring of service registrations, enabling activation or deactivation of services and maintaining a historical record of assignments and their status changes.

2.2.6 Service Consumption Table
The Service Consumption Table stores information about the consumption of various services by assignment ids. It shares the same primary and foreign keys as the Service Registration Table, including period, year, assignment ID, and service ID. Additionally, it includes columns for the consumption quantity and unit of measurement. The consumption quantity column records the amount or quantity of the service consumed by a specific assignment ID, while the unit column specifies the measurement unit used. This table enables tracking and analysis of service usage, facilitating billing, cost analysis, resource management, and identification of consumption patterns or anomalies. The primary and foreign keys ensure the accurate association of consumption data with service registrations and assignment ids.

2.2.7 Ledger Table:
The ledger table stores financial information related to assignments and services provided. It includes attributes such as doc_id (primary key), which serves as a unique identifier for each ledger entry. The table also includes foreign keys like assignmentid and serviceid, establishing relationships with the assignment table and service table, respectively. This table captures information about financial transactions, such as invoices, payments, and other financial records associated with assignments and services.

These tables form the foundation of the apartment management system in SAP ABAP. They store and manage crucial data related to apartments, owners, services, assignments, and financial transactions. By establishing relationships between these tables, the system can effectively track and manage apartment-related activities, provide accurate financial records, and facilitate efficient management of apartments and services.

2.3 TMG
In SAP, TMG stands for Transaction Maintenance Generator. It is a tool or framework provided by SAP to simplify the development and maintenance of transactions within the SAP system. TMG allows developers to create and customize transactions quickly and efficiently by generating the necessary programming objects and user interfaces.
Here are some key points about TMG in SAP:
Transaction Maintenance: TMG is primarily used to create and maintain transactions in SAP. A transaction is a unit of work or a sequence of steps that perform a specific business process within the SAP system. Transactions can be used to access and modify data, execute programs, or perform other operations.
Generation of Programming Objects: TMG generates the necessary programming objects, such as function modules, screens, and flow logic, to support the transaction. These objects are created based on the configuration and specifications provided by the developer.
Simplified Development: TMG simplifies the development process by providing a guided approach and automated tools. Developers can use the TMG framework to define the transaction attributes, screens, fields, and navigation logic. TMG then generates the required coding and objects, reducing manual effort.
Screen and Field Generation: TMG generates the user interface screens for the transaction based on the defined fields and their properties. Developers can specify the screen layout, input validations, and field behaviours using the TMG configuration options.
Menu and Authorization Integration: TMG integrates the newly created transactions with the SAP menu structure and authorization concept. The generated transaction is automatically added to the appropriate menu and can be assigned to specific user roles or profiles for access control.
Maintenance and Enhancement: TMG allows for easy maintenance and enhancement of transactions. If changes are required in the transaction, developers can modify the TMG configuration and regenerate the necessary objects. This ensures that the changes are applied consistently across all instances of the transaction.
Integration with other SAP Components: Transactions created using TMG can be integrated with other SAP components, such as reports, forms, or workflows, to provide end-to-end business functionality. TMG supports the integration of additional programming objects and interfaces to extend the transaction's capabilities.
TMG is a powerful tool in SAP that accelerates the development and maintenance of transactions. It simplifies the process by automating the generation of programming objects and user interfaces, allowing developers to focus on the business logic and customization aspects. TMG plays a significant role in building user-friendly and efficient transactions within the SAP system.

2.4 VALIDATIONS
In SAP, validations refer to a set of rules and checks that are implemented to ensure the accuracy and consistency of data entered or processed within the system. Validations help maintain data integrity and prevent incorrect or inconsistent information from being recorded.
There are several types of validations in SAP, including:
Field Validations: These validations are used to verify the correctness and completeness of data entered in individual fields. They typically involve checking the format, length, or specific values of a field. For example, ensuring that a date field contains a valid date or that a numerical field does not exceed a certain range.
Cross-Field Validations: Cross-field validations involve checking the relationship between multiple fields to ensure their logical consistency. For example, verifying that the start date of a project is earlier than the end date or that the total quantity ordered does not exceed the available stock.
Check Table Validations: Check table validations are used to validate data entered in a field against a predefined set of values from a check table or a domain. This ensures that only valid values are selected or entered. For instance, validating a material number against the material master database to ensure its existence.
Authorization Validations: Authorization validations determine whether a user has the appropriate authorization or permission to perform a particular action or access certain data. These validations help enforce security and ensure that users can only perform tasks they are authorized to do.
User-Exit Validations: User-exit validations allow the customization and implementation of custom business rules and checks within SAP. They are programmed using ABAP (Advanced Business Application Programming) code and can be used to perform complex validations based on specific business requirements.
Integration Validations: Integration validations are used when data is exchanged between different SAP modules or external systems. These validations ensure that data transferred between systems is accurate and complete, avoiding discrepancies or data inconsistencies.

These are some of the common types of validations in SAP. The specific types and methods of validation can vary depending on the SAP module or application being used, as well as the customization and configuration settings implemented within the system.

Chapter 3: GUI Designing and Programming in Module Pool
3.1 Introduction to Module Pool Designing:
Module pool programming in SAP is a powerful tool that allows developers to create interactive screens and capture user input. It is a key component in the development of the Facility Management System as it enables the system to respond to user actions and process data in real-time.
The module pool design follows the Model-View-Controller (MVC) architecture, with the module pool acting as the controller. The controller is responsible for handling user interactions, managing data flow between the user interface and backend logic, and updating the views (screens) based on user input.
The primary purpose of module pool design is to provide a user-friendly interface that allows users to interact with the system effortlessly. By designing screens with clear labels, intuitive input fields, and relevant UI elements, the module pool programs ensure that users can easily navigate the system and perform their desired tasks.
In the context of the Facility Management System, the module pool design enables users to manage apartments, owners, assignments, services, and financial aspects effectively. It facilitates tasks such as entering service consumption data, generating consumption reports, and performing financial calculations.
Additionally, the module pool design incorporates error handling mechanisms and data validations to ensure data integrity and prevent incorrect or incomplete user inputs. This helps maintain the accuracy and reliability of the system's data.
The module pool programs also focus on providing a seamless user experience by considering factors such as screen layout, flow, and customization options. Efforts are made to present information in a logical and organized manner, guiding users through the required steps and providing a visually appealing interface.
This chapter provides an overview of the module pool programs used in the Facility Management System and explores their design and functionality. The two primary programs discussed are:
YT017MP_SRVC_CONSP: This program handles the consumption entry and consumption report functionalities.
YT017MP_CREATE_LEDG: This program updates the Ledger table based on service consumption entries and rates.

3.2 Purpose and Scope:
The purpose of the module pool programs in the Facility Management System is to streamline the management of apartments, owners, assignments, services, and financial aspects.
These programs aim to automate processes, improve efficiency, and provide accurate and timely information for decision-making.
The scope of the module pool programs encompasses functionalities such as data entry, data retrieval, data processing, and reporting.
In these module pool programs includes capturing service consumption data, generating consumption reports, and updating the Ledger table with the calculated amounts.

3.3 Overview of Module Pool Programs:
YT017MP_SRVC_CONSP: This program serves as the main entry point for consumption-related functionalities. It allows users to choose between consumption entry and consumption report options. The program includes subscreens for data entry and report generation, ensuring a seamless user experience.
YT017MP_CREATE_LEDG: This program focuses on updating the Ledger table with the calculated amounts based on service consumption entries and rates. It retrieves data from the service master and performs the necessary calculations before updating the Ledger table.

3.4 Screen Layout and Flow:
[image:]The YT017MP_SRVC_CONSP program consists of several screens and subscreens designed to guide users through the consumption entry and reporting processes. The main screen allows users to select between consumption entry and consumption report options using radio buttons.
Figure 3.1: Screen Painter
Subscreen 1: This subscreen is displayed when the consumption entry option is selected. It includes a table control where users can enter service consumption data for different services.
Subscreen 2: This subscreen is displayed when the consumption report option is selected. It prompts users to provide the necessary input, such as the Assignment ID, for generating the consumption report.
Subscreen 3: This is a default blank screen displayed when the program starts. It serves as a placeholder for future enhancements or additional functionality.
The layout and flow of the screens are designed to provide a user-friendly interface, guiding users through the necessary steps for consumption entry and reporting.

3.5 Use Of ALV In Module Pool
In module pool programming, ALV stands for ABAP List Viewer. ALV is a powerful tool provided by SAP for displaying tabular data in a user-friendly and interactive format. It allows developers to create professional-looking reports and lists with features such as sorting, filtering, grouping, and subtotaling.
ALV provides a standardized way to present data from internal tables in a consistent and visually appealing manner. It offers various predefined display options, such as grid layout, hierarchical display, and tree-like structures, to accommodate different reporting requirements.
The key class used for ALV implementation is CL_GUI_ALV_GRID, which provides methods for defining the structure and behaviour of the ALV grid. This class allows developers to define the columns, layout, and functionality of the grid.
To display data in the ALV grid, developers typically follow these steps:
1. Create an instance of the CL_GUI_ALV_GRID class.
2. Define the structure of the ALV grid by creating a field catalog using the LVC_FIELD structure. The field catalog describes the columns and their properties, such as field names, headings, data types, and formatting options.
3. Populate an internal table with the data to be displayed in the ALV grid.
4. Set the data source for the ALV grid using the SET_TABLE_FOR_FIRST_DISPLAY method of the CL_GUI_ALV_GRID class. This method takes the field catalog and internal table as parameters.
5. Optionally, customize the appearance and behaviour of the ALV grid by calling various methods of the CL_GUI_ALV_GRID class. These methods allow you to configure sorting, filtering, grouping, subtotaling, and other features.
6. Display the ALV grid on the screen using the GRID_DISPLAY method of the CL_GUI_ALV_GRID class.

3.6 Table Control In Module Pool
In module pool programming, a table control is a user interface element that allows for structured data entry and display within a module pool screen. It provides a grid-like layout where users can enter or view data in a tabular format.
The table control is typically implemented using the TABLECONTROL keyword in the screen painter of the ABAP Workbench. When defining the table control, developers specify the number of rows and columns, along with their properties and characteristics.
The key features and functionalities of a table control in module pool programming include:
1. Data Entry: Users can input data directly into individual cells of the table control. They can navigate between cells using the keyboard or mouse, making it convenient for entering data in a structured manner.
2. Data Display: The table control can also be used to display data retrieved from a database or other sources. It allows users to view the data in a tabular format, with rows and columns representing different fields or attributes.
3. Column Headers: Each column in the table control can have a header that describes the data contained in that column. Column headers help users identify the purpose or meaning of each column, making the table control more user-friendly.
4. Row Selection: Users can select individual rows or multiple rows in the table control. This enables them to perform operations or actions on the selected rows, such as editing, deleting, or processing the data.
5. Scrollbars: If the table control contains more rows than can be displayed on the screen at once, scrollbars are automatically added to allow users to navigate through the data.
6. Event Handling: Developers can define event handling routines for various table control events, such as row selection, cell modification, or scrolling. These event handlers enable the execution of specific actions or validations based on user interactions with the table control.
The table control provides a structured and organized approach to data entry and display within a module pool program. It enhances the user experience by presenting data in a familiar grid-like format and allowing for efficient manipulation and analysis of tabular data.

3.7 Consumption Entry Functionality:
The consumption entry feature in the YT017MP_SRVC_CONSP program allows users to enter service consumption data using the table control on Subscreen 1. Users can select the service, enter the consumption quantity, and save the entries.
The program performs validations and checks to ensure the accuracy and consistency of the entered data. It verifies the availability of the service and performs necessary calculations, such as applying base prices and GST rates, to derive the inclusive amount.
[image:]Upon successful validation, the consumption entries are saved in the Service Consumption table for further processing and reporting.
Figure 3.2: Service consumption entry using YT017MP_SRVC_CONSP

3.8 Consumption Report Functionality:
The consumption report feature in the YT017MP_SRVC_CONSP program enables users to generate reports based on the entered consumption data. Users select the consumption report option and provide the necessary input, such as the Assignment ID, on Subscreen 2.
The program retrieves the service consumption data from the Service Consumption table based on the provided input. It then presents the data in an ABAP List Viewer (ALV) format, allowing users to view and analyse the consumption report.
Additional features such as sorting, filtering, and exporting options may be available in the ALV display to enhance the usability of the consumption report.

3.9 Overview of YT017MP_CREATE_LEDG Program
YT017MP_CREATE_LEDG program focuses on updating the Ledger table based on service consumption entries and rates. It complements the consumption entry functionality provided by YT017MP_SRVC_CONSP. This program calculates and records ledger entries based on the consumption data entered in the system.

3.10 Ledger Update Functionality:
The YT017MP_CREATE_LEDG program focuses on updating the Ledger table based on service consumption entries and rates. It retrieves the GST percentage from the service master for each service to perform the necessary calculations.
Using the service consumption data and GST percentage, the program calculates the inclusive amount for each Assignment ID. It then updates the Ledger table with the calculated amounts.
Error handling and validation mechanisms are implemented to ensure data integrity and consistency. If any issues or errors occur during the update process, appropriate error messages are displayed to guide the user.
The Ledger update functionality plays a critical role in maintaining accurate financial records and providing insights into service consumption costs within the Facility Management System.
The module pool design ensures modularity and maintainability by separating the consumption entry and consumption reporting functionalities into distinct programs. This design allows for independent development, testing, and enhancements, promoting efficient software development practices.
By following this module pool design, the Facility Management System can effectively capture and manage service consumption data, generate consumption reports, and maintain reliable financial records.

Chapter 4: Invoice Generation Using Adobe Forms
In this chapter, we will delve into the implementation of Adobe Forms for the purpose of invoice generation. Adobe Forms provide a powerful toolset for creating visually appealing and interactive forms within the SAP environment. By leveraging the capabilities of Adobe Forms, we can enhance the user experience and streamline the invoice generation process. Let's explore the key aspects of Adobe Form interface, Adobe Form design, and the overall invoice generation process.

4.8.1 Adobe Form Interface
The Adobe Form interface acts as a communication bridge between the ABAP program and the Adobe Form itself. It defines the input and output parameters required for the form processing. By establishing a well-defined interface, we ensure seamless data exchange and integration between the backend program and the Adobe Form. We will create an interface specific to our invoice generation requirements and map the necessary data fields accordingly.

4.2 Designing The Adobe Form
The design of the Adobe Form plays a vital role in delivering an intuitive and visually appealing invoice document. Using the Adobe Form Designer tool, we will create a new form tailored to our invoice generation needs. We will structure the form layout by defining header, footer, and content sections. Within these sections, we will incorporate form fields, text elements, tables, and images to present the invoice information in an organized and user-friendly manner. Additionally, we will configure formatting options and styles to achieve the desired look and feel.

4.3 Data Binding And Processing
[image:]To populate the Adobe Form with the relevant invoice data, we need to establish data bindings between the form and the backend sources. This involves mapping the input parameters from the interface to the corresponding form fields. We will explore techniques to bind the form fields to internal tables, structures, or function modules that hold the invoice data. Furthermore, we will implement logic to display dynamic data based on user input or backend calculations, ensuring that the invoice document reflects the most up-to-date information.
Figure 4.1: Adobe form for invoice generation in layout editor
4.4 Printing And Output Options
Once the Adobe Form is populated with the invoice data, we can generate printable output. We will configure the print options such as page format, orientation, margins, and other relevant settings to ensure the document meets the desired printing requirements. We will also explore the functionality to preview and test the Adobe Form output, making necessary adjustments and refinements as needed.

4.5 Invoice Generation Process
In this section, we will integrate the Adobe Form with the invoice generation program. We will pass the input parameters to the Adobe Form interface, triggering the retrieval of data from the backend system. By leveraging the data binding and processing techniques discussed earlier, we will populate the Adobe Form with the retrieved invoice data. We will implement the necessary logic to generate the final invoice document, adhering to the predefined format and layout.

4.6 Error Handling and Exception Handling
To ensure a robust invoice generation process, we must address error handling and exception scenarios. We will implement mechanisms to handle errors and exceptions that may occur during the form processing. Error messages and validations will be incorporated into the Adobe Form to guide users in providing accurate and complete invoice information. We will explore error logging and error handling strategies to facilitate efficient troubleshooting and problem resolution.

4.7 Advanced Features And Enhancements
In this final section, we will explore advanced features and enhancements that can further enrich the Adobe Form and invoice generation process. We will delve into incorporating additional functionalities such as barcodes, digital signatures, or other customizations specific to the project requirements. We will also discuss the possibilities of extending the Adobe Form's functionality using JavaScript and integrating the form with workflow or document management systems.
4.8 Overview of Program YT017MP_ADOBE_INVOICE:
Integration of Adobe Form (YT017LEDGINVCPRGRM) in Invoice Generation (YT017LEDGINVCINTRFC)
Program YT017MP_ADOBE_INVOICE is an ABAP program that integrates the Adobe Form named YT017LEDGINVCPRGRM for the generation of invoices. It combines the functionality of a module pool program with the capabilities of Adobe Forms to create professional-looking and customizable invoice documents. The program follows a specific flow and utilizes various components to achieve the invoice generation process.

4.8.1 Program Flow:
The program follows a typical flow, starting with pre-processing activities, user input validation, data retrieval, data processing, and finally generating the invoice document using the Adobe Form YT017LEDGINVCPRGRM.

4.8.2 Adobe Form Interface (YT017LEDGINVCINTRFC):
The program defines an interface for the Adobe Form YT017LEDGINVCPRGRM, specifying the input parameters required for the invoice generation. These input parameters contain the relevant invoice data, such as total amount, owner name, period, due date, and other invoice details. The Adobe Form YT017LEDGINVCPRGRM will use these parameters to populate the corresponding form fields.

4.8.3 Adobe Form Coding:
The program includes coding logic specific to the Adobe Form YT017LEDGINVCPRGRM. This coding is responsible for binding the input parameters to the appropriate form fields, performing any necessary calculations or data transformations, and formatting the invoice document according to the desired layout and styling.

4.8.4 Adobe Form Initialization:
The program initializes the Adobe Form YT017LEDGINVCPRGRM by calling the function module /1BCDWB/SM00000274. This function module sets up the necessary runtime environment for the Adobe Form YT017LEDGINVCPRGRM and prepares it for processing.

4.8.5 Passing Input Parameters:
Once the Adobe Form YT017LEDGINVCPRGRM is initialized, the program passes the input parameters to the form interface. These parameters contain the invoice data that needs to be displayed in the form fields. The program ensures that the relevant data is correctly mapped to the corresponding form fields for accurate representation in the generated invoice document.

4.8.6 Processing and Generation:
The Adobe Form YT017LEDGINVCPRGRM coding logic processes the input data and generates the invoice document. It performs any required calculations, applies formatting and styling, and arranges the invoice information in a visually appealing manner. The Adobe Form YT017LEDGINVCPRGRM's flexibility allows for customization of the invoice layout to meet specific business requirements.

4.8.7 Output Handling:
The generated invoice document can be handled in different ways based on the program's implementation. It can be stored as a file, printed, or displayed on the screen for further actions. The program may incorporate additional logic to determine the appropriate output handling based on business rules or user preferences.

By integrating the Adobe Form YT017LEDGINVCPRGRM into the invoice generation process, Program YT017MP_ADOBE_INVOICE enhances the visual presentation and professionalism of the generated invoices. The use of Adobe Forms provides flexibility in designing and customizing the invoice layout, ensuring that the invoice documents meet the specific needs of the business.

Appendix
Program YT017MP_SRVC_CONSP:
Main File:
INCLUDE YT017MP_SRVC_CONSP_TOP . " Global Data

 INCLUDE YT017MP_SRVC_CONSP_O01 . " PBO-Modules
 INCLUDE YT017MP_SRVC_CONSP_I01 . " PAI-Modules
 INCLUDE YT017MP_SRVC_CONSP_F01 . " FORM-Routines
Top Include:
PROGRAM YT017MP_SRVC_CONSP.
TABLES: YT017_Servicecon.
CONTROLS: TAB1 TYPE TABLEVIEW USING SCREEN 9002.
TYPES: BEGIN OF TY_TABOUT,
 AssignmentId TYPE YT017_Assignment-assignmentid,
 ApartmentId TYPE YT017_Apartment-apartmentid,
 Period TYPE YT017_Servicereg-period,
 Year_ TYPE YT017_Servicereg-year_,
 ServiceId TYPE YT017_Servicemst-serviceid,
 Name TYPE YT017_Servicemst-name,
 Consumption TYPE YT017_Servicecon-consumption_quantity,
 Unit TYPE YT017_Servicemst-unit,
 END OF TY_TABOUT.
Data: rad1 type c,
 rad2 type c.
Data: gt_tabout type table of TY_TABOUT,
 gs_tabout type TY_TABOUT.
Data: gv_subscreen_num type sy-dynnr VALUE '9004'.
DATA: my_container TYPE REF TO cl_gui_custom_container,
 my_alv_grid TYPE REF TO cl_gui_alv_grid,
 gt_fieldcatalog TYPE lvc_t_fcat WITH HEADER LINE.
Input Modules:
&---
*& Include YT017MP_SRVC_CONSP_I01
&---
&---
*& Module USER_COMMAND_9001 INPUT
&---
* text
--
MODULE user_command_9001 INPUT.
 CASE SY-UCOMM.
 WHEN 'BACK'.
 LEAVE TO SCREEN 0.
 WHEN 'EXIT'.
 LEAVE PROGRAM.
 ENDCASE.
ENDMODULE.
&---
*& Module VALIDATE INPUT
&---
* text
--
MODULE validate INPUT.
Data: lv_assignmentid type Yt017_assignment-assignmentid,
 lv_period type yt017_servicecon-period,
 lv_year type yt017_servicecon-year_.
 Select SINGLE assignmentid
 period
 year_
 FROM yt017_servicereg
 into (lv_assignmentid, lv_period, lv_year)
 WHERE assignmentid = yt017_servicecon-assignmentid
 and period = yt017_servicecon-period
 and year_ = yt017_servicecon-year_.
 if sy-Subrc <> 0.
 message e004(YT017_SRVC_CONSP).
 ENDIF.

ENDMODULE.
MODULE modify_internal_table INPUT.
if sy-ucomm = 'SAVE'.
* Transferring table control data into structure
 MOVE-CORRESPONDING tab1 to gs_tabout.
 yt017_SERVICECON-serviceid = GS_TABOUT-serviceid.
 yt017_SERVICECON-unit = GS_TABOUT-unit.
 yt017_servicecon-consumption_quantity = gs_tabout-consumption.
 if sy-subrc = 0.
 Modify YT017_SERVICECON FROM YT017_SERVICECON.
 if sy-subrc = 0.
 COMMIT WORK AND WAIT.
 MESSAGE 'Data Saved Successfully for ApartmentId '(001)
 && gs_tabout-apartmentid
 && ' & Period ' && gs_tabout-period type 'S'.
 ELSE.
 MESSAGE e006(YT017_SRVC_CONSP).
 ENDIF.
 ENDIF.
 ENDIF.
ENDMODULE.
Program YT017MP _CREATE_LEDG
Main File:
INCLUDE YT017MP_CREATE_LEDG_TOP . " Global Data

 INCLUDE YT017MP_CREATE_LEDG_O01 . " PBO-Modules
 INCLUDE YT017MP_CREATE_LEDG_I01 . " PAI-Modules
 INCLUDE YT017MP_CREATE_LEDG_F01 . " FORM-Routines
Top Include:
PROGRAM YT017MP_CREATE_LEDG.
TYPES: BEGIN OF Ty_INPUT,
 Period Type YT017_ServiceCon-period,
 Year TYPE yt017_servicecon-year_,
 END OF ty_input,
 BEGIN OF Ty_Srvc_Con_mst,
 AssignmentId type YT017_servicecon-assignmentid,
 Period type YT017_servicecon-period,
 Year type Yt017_servicecon-year_,
 Serviceid type YT017_servicecon-serviceid,
 Consumption type YT017_servicecon-consumption_quantity,
 baseprice TYPE yt017_servicemst-baseprice,
 currency TYPE YT017_Servicemst-currency,
 gst TYPE YT017_Servicemst-gst,
 End of ty_srvc_con_mst.
"Global Structure for Input
Data: gs_input type Ty_input.

"Structure and Internal Table of Service master-Consumption
Data: gs_srvc_con_mst type ty_srvc_con_mst,
 gt_srvc_con_mst TYPE TABLE OF ty_srvc_con_mst.
"Structure of Ledger Table
Data: gs_ledger type YT017_ledger.

Input Module:
&---
*& Include YT017MP_CREATE_LEDG_I01
&---
&---
*& Module USER_COMMAND_9001 INPUT
&---
* text
--
MODULE user_command_9001 INPUT.
CASE sy-ucomm.
 WHEN 'BACK'.
 LEAVE TO SCREEN 0.
 WHEN 'EXIT'.
 LEAVE PROGRAM.
ENDCASE.
ENDMODULE.
&---
*& Module GETDATA INPUT
&---
* text
--
MODULE getdata INPUT.

 data: lv_docid type Yt017_ledger-doc_id.
 Select SINGLE
 doc_id
 from Yt017_ledger
 INTO lv_docid
 where period = gs_input-period
 and year_ = gs_input-year.

 if lv_docid is NOT INITIAL.
 MESSAGE 'Ledger Already Generated.' TYPE 'E'.
 ENDIF.

 Select
 sc~assignmentid
 sc~period
 sc~year_
 sc~serviceid
 sc~consumption_Quantity
 sm~baseprice
 sm~currency
 sm~gst
 FROM Yt017_servicecon as sc
 INNER JOIN YT017_servicemst as sm on sm~serviceid = sc~serviceid
 into TABLE gt_srvc_con_mst
 where sc~period = gs_input-period
 and sc~year_ = gs_input-year.
if sy-subrc <> 0.
 message 'Data not found' type 'E'.
endif.

ENDMODULE.
&---
*& Module PROCESSDATA INPUT
&---
* text
--
MODULE processdata INPUT.
 data: lv_idx type sy-tabix,
 lv_amt type p,
 lv_docidc(10) type c,
 lv_docidn(10) type n.

 SELECT SINGLE
 max(doc_id)
 FROM YT017_Ledger
 into lv_docidc.
 if sy-subrc = 0.
 lv_docidn = lv_docidc.
 ENDIF.

 Loop at gt_srvc_con_mst into gs_srvc_con_mst.

 "Amount Without GST
 lv_amt = gs_srvc_con_mst-baseprice * gs_srvc_con_mst-consumption.

 "Amount With GST
 gs_ledger-amount = lv_amt * (100 + gs_srvc_con_mst-gst) / 100.

 gs_ledger-assignmentid = gs_srvc_con_mst-assignmentid.
 gs_ledger-currency = gs_srvc_con_mst-currency.
 gs_ledger-period = gs_srvc_con_mst-period.
 gs_ledger-serviceid = gs_srvc_con_mst-serviceid.
 gs_ledger-postingdate = sy-datum.
 gs_ledger-year_ = gs_srvc_con_mst-year.
 gs_ledger-shkzg = 'H'.
 lv_docidn = lv_docidn + 1.
 gs_ledger-doc_id = lv_docidn.

 modify YT017_Ledger from gs_ledger.
 if sy-subrc <> 0.
 MESSAGE 'Something went wrong while writing in ledger table.' type 'E'.
 ENDIF.

 clear: gs_ledger, gs_srvc_con_mst, lv_amt.

 ENDLOOP.

 MESSAGE 'Ledger balance calculated successfully' type 'S'.

ENDMODULE.
Program YT017MP_ADOBE_INVOICE:
Main File:
INCLUDE YT017MP_ADOBE_INVOICE_TOP . " Global Data

 INCLUDE YT017MP_ADOBE_INVOICE_O01 . " PBO-Modules
 INCLUDE YT017MP_ADOBE_INVOICE_I01 . " PAI-Modules
 INCLUDE YT017MP_ADOBE_INVOICE_F01 . " FORM-Routines

Top Include:
&---
*& Include YT017MP_ADOBE_INVOICE_TOP - Module Pool YT017MP_ADOBE_INVOICE
&---
PROGRAM YT017MP_ADOBE_INVOICE.

TYPES: BEGIN OF Ty_INPUT,
 AssignmentId TYPE YT017_ServiceCon-assignmentid,
 Period Type YT017_ServiceCon-period,
 Year TYPE yt017_servicecon-year_,
 END OF ty_input,

 BEGIN OF Ty_Srvc_Con_mst,
 AssignmentId type YT017_servicecon-assignmentid,
 Period type YT017_servicecon-period,
 Year type Yt017_servicecon-year_,
 Serviceid type YT017_servicecon-serviceid,
 Consumption type YT017_servicecon-consumption_quantity,
 service_name TYPE YT017_servicemst-name,
 baseprice TYPE yt017_servicemst-baseprice,
 currency TYPE YT017_Servicemst-currency,
 gst TYPE YT017_Servicemst-gst,
 End of ty_srvc_con_mst.

"Global Structure for Input
Data: gs_input type Ty_input.

"Structure and Internal Table of Service master-Consumption
Data: gs_srvc_con_mst type ty_srvc_con_mst,
 gt_srvc_con_mst TYPE TABLE OF ty_srvc_con_mst.

"Structure of Ledger Table
Data: gs_ledger type YT017_ledger,
 gt_ledger TYPE TABLE OF YT017_ledger.

"Structure and Internal Table for Bill Document
Data: gs_bill type YT017_BILL_STRUC,
 gt_bill TYPE YT017_BILL_TT.

"Total Amount of Bill
Data: gv_total type PC207-betrg,
 gv_total_words(200) type C.

"System Structure for Adobe form
Data: GS_OUT TYPE SFPOUTPUTPARAMS.
Input Module Includes:
&---
*& Include YT017MP_ADOBE_INVOICE_I01
&---
&---
*& Module VALIDATE INPUT
&---
* text
--
MODULE validate INPUT.
Data: lv_assignmentid type YT017_Assignment-assignmentid.

Select SINGLE
 assignmentId
 from YT017_assignment
 INTO lv_assignmentid
 WHERE assignmentId = Gs_input-assignmentid.
 if sy-subrc <> 0.
 MESSAGE 'AssignmentId is not valid.' type 'E'.
 ENDIF.

ENDMODULE.
&---
*& Module USER_COMMAND_9001 INPUT
&---
* text
--
MODULE user_command_9001 INPUT.
 CASE sy-ucomm.
 WHEN 'BACK'.
 LEAVE TO SCREEN 0.
 WHEN 'EXIT'.
 LEAVE PROGRAM.
ENDCASE.
ENDMODULE.
&---
*& Module GETDATA INPUT
&---
* text
--
MODULE getdata INPUT.

 data: lv_docid type Yt017_ledger-doc_id.
 Select SINGLE
 doc_id
 from Yt017_ledger
 INTO lv_docid
 where assignmentid = gs_input-assignmentid
 and period = gs_input-period
 and year_ = gs_input-year.

 if lv_docid is NOT INITIAL.
 MESSAGE 'Ledger Already Generated.' TYPE 'E'.
 ENDIF.

 Select
 sc~assignmentid
 sc~period
 sc~year_
 sc~serviceid
 sc~consumption_Quantity
 sm~name
 sm~baseprice
 sm~currency
 sm~gst
 FROM Yt017_servicecon as sc
 INNER JOIN YT017_servicemst as sm on sm~serviceid = sc~serviceid
 into TABLE gt_srvc_con_mst
 where sc~assignmentid = gs_input-assignmentid
 and sc~period = gs_input-period
 and sc~year_ = gs_input-year.
if sy-subrc <> 0.
 message 'Data not found' type 'E'.
endif.

ENDMODULE.
&---
*& Module PROCESSDATA INPUT
&---
* text
--
MODULE processdata INPUT.
 data: lv_idx type sy-tabix,
 lv_amt type p,
 lv_docidc(10) type c,
 lv_docidn(10) type n,
 lv_sno TYPE n.

 SELECT SINGLE
 max(doc_id)
 FROM YT017_Ledger
 into lv_docidc.
 if sy-subrc = 0.
 lv_docidn = lv_docidc.
 ENDIF.

 Loop at gt_srvc_con_mst into gs_srvc_con_mst.

 "Amount Without GST
 lv_amt = gs_srvc_con_mst-baseprice * gs_srvc_con_mst-consumption.

 "Amount With GST
 gs_ledger-amount = lv_amt * (100 + gs_srvc_con_mst-gst) / 100.

 gs_ledger-assignmentid = gs_srvc_con_mst-assignmentid.
 gs_ledger-currency = gs_srvc_con_mst-currency.
 gs_ledger-period = gs_srvc_con_mst-period.
 gs_ledger-serviceid = gs_srvc_con_mst-serviceid.
 gs_ledger-postingdate = sy-datum.
 gs_ledger-year_ = gs_srvc_con_mst-year.
 gs_ledger-shkzg = 'H'.
 lv_docidn = lv_docidn + 1.
 gs_ledger-doc_id = lv_docidn.

 lv_sno = lv_sno + 1.
 gs_bill-sno = lv_sno.
 gs_bill-service_name = gs_srvc_con_mst-service_name.
 gs_bill-amount = gs_ledger-amount.
 gs_bill-currency = gs_ledger-currency.

 modify YT017_Ledger from gs_ledger.
 if sy-subrc <> 0.
 MESSAGE 'Something went wrong while writing in ledger table.' type 'E'.
 ENDIF.

 gv_total = gv_total + gs_bill-amount.

 append: gs_bill to gt_bill,
 gs_ledger to gt_ledger.

 clear: gs_ledger, gs_srvc_con_mst, lv_amt.

 ENDLOOP.

 if gt_bill is INITIAL.
 MESSAGE 'Bill Data not found' TYPE 'E'.
 ENDIF.

 if gv_total is INITIAL.
 MESSAGE 'Problem in calculating total amount' TYPE 'E'.
 ENDIF.

 MESSAGE 'Ledger balance calculated successfully' type 'S'.

ENDMODULE.
&---
*& Module FORMDATA INPUT
&---
* text
--
MODULE formdata INPUT.

data: lv_bill_no type string,
 lv_bill_date type sy-datum,
 lv_bill_due_date type sy-datum,
 lv_day(2) type n,
 lv_month type char3,
 lv_period type string,
 lv_flatno(4) type n,
 lv_ownerid(10) type c,
 lv_ownername(50) type c,
 lv_appartmentid(5) type c,
 lv_currency type YT017CRNCY.
lv_bill_no = gs_input-assignmentid && gs_input-period && gs_input-year.
lv_bill_date = sy-datum.
lv_bill_due_date = lv_bill_date + 10.
lv_currency = 'INR'.
case gs_input-period.
 when '01'.:
 lv_month = 'JAN',
 lv_day = '31'.
 when '02'.
 lv_month = 'FEB'.
 lv_day = '28'.
 when '03'.
 lv_month = 'MAR'.
 lv_day = '31'.
 when '04'.
 lv_month = 'APR'.
 lv_day = '30'.
 when '05'.
 lv_month = 'MAY'.
 lv_day = '31'.
 when '06'.
 lv_month = 'JUN'.
 lv_day = '30'.
 when '07'.
 lv_month = 'JUL'.
 lv_day = '31'.
 when '08'.
 lv_month = 'AUG'.
 lv_day = '31'.
 when '09'.
 lv_month = 'SEP'.
 lv_day = '30'.
 when '10'.
 lv_month = 'OCT'.
 lv_day = '31'.
 when '11'.
 lv_month = 'NOV'.
 lv_day = '30'.
 when '12'.
 lv_month = 'DEC'.
 lv_day = '31'.
ENDCASE.

lv_period = ' 01 ' && lv_month && ' ' && gs_input-year && ' '
 && lv_day && ' ' && lv_month && ' ' && gs_input-year.

SELECT SINGLE
 ap~flat_no
 ow~name
 as~APARTMENTID
 as~ownerid
 from YT017_Assignment as as
 INNER JOIN YT017_Owner as ow on ow~ownerid = as~ownerid
 INNER JOIN YT017_Apartment as ap on ap~apartmentid = as~apartmentid
 into (lv_flatno, lv_ownername, lv_appartmentid, lv_ownerid)
 WHERE as~assignmentid = gs_input-assignmentid.

 if sy-subrc <> 0.
 MESSAGE 'Flatno or Owner Name not found!' TYPE 'E'.
 ENDIF.

CALL FUNCTION 'HR_IN_CHG_INR_WRDS'
 EXPORTING
 amt_in_num = gv_total
 IMPORTING
 AMT_IN_WORDS = gv_total_words
 EXCEPTIONS
 DATA_TYPE_MISMATCH = 1
 OTHERS = 2
 .
 IF sy-subrc <> 0.
* Implement suitable error handling here
 MESSAGE 'Problem in convertin Amount in words' TYPE 'E'.
 ENDIF.

GS_OUT-nodialog = space.
GS_OUT-preview = 'X'.

 CALL FUNCTION 'FP_JOB_OPEN'
 CHANGING
 ie_outputparams = GS_OUT
 EXCEPTIONS
 CANCEL = 1
 USAGE_ERROR = 2
 SYSTEM_ERROR = 3
 INTERNAL_ERROR = 4
 OTHERS = 5
 .
 IF sy-subrc <> 0.
* Implement suitable error handling here
 ENDIF.

CALL FUNCTION '/1BCDWB/SM00000274'
 EXPORTING
* /1BCDWB/DOCPARAMS =
 iv_total_words = gv_total_words
 iv_total = gv_total
 it_bill = gt_bill
 iv_ownername = lv_ownername
 iv_period = lv_period
 iv_bill_due_date = lv_bill_due_date
 iv_flatno = lv_flatno
 iv_bill_date = lv_bill_date
 iv_currency = lv_currency
 iv_bill_no = lv_bill_no
* IMPORTING
* /1BCDWB/FORMOUTPUT =
* EXCEPTIONS
* USAGE_ERROR = 1
* SYSTEM_ERROR = 2
* INTERNAL_ERROR = 3
* OTHERS = 4
 .
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.

CALL FUNCTION 'FP_JOB_CLOSE'
* IMPORTING
* E_RESULT =
* EXCEPTIONS
* USAGE_ERROR = 1
* SYSTEM_ERROR = 2
* INTERNAL_ERROR = 3
* OTHERS = 4
 .
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.
ENDMODULE.
Screen Flow Logic:
PROCESS BEFORE OUTPUT.
 MODULE STATUS_9001.
PROCESS AFTER INPUT.
 MODULE USER_COMMAND_9001 AT EXIT-COMMAND.
 FIELD GS_INPUT-AssignmentId MODULE Validate.
 MODULE GetData.
 MODULE ProcessData.
MODULE FormData.
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image1.jpeg

