Course File

Subject Title/Subject Code: Advanced Engineering Mathematics

Semester: III Year 2023-24

Name of the Faculty: Dr. Kalpana Fatawat

E-mail id: kalpana.fatawat@technonjr.org

Class Schedule

Total Number of Lectures: 40

i)Course Objective

The subject aims to provide the student with:

- 1. Numerical methods to solve and analyze engineering problems.
- 2. An understanding of Fourier series and Laplace Transform to solve real world problems.
- 3. An understanding of Vector calculus and Linear algebra.

INDEX - COURSE FILE

S. No.	CONTENT / ITEM NO.	PAGE NO.
1	Vision And Mission Of The Institute	
2	Vision And Mission Of The Department	
3	Program Educational Objective Of Department (PEO's)	
4	Program Outcomes Of Department (PO's)	
5	Course Outcome (COs)	
6	COs mapping with Pos and PSOs	
7	Academic Calendar	
8	Evaluation Scheme	
9	Course Syllabus	
10	Prescribed Books	
11	Copy Of Time Table	
12	Course Schedule Plan	
13	Assignment Sheet (Unit Wise)	
14	Quiz Questions (One From Each Unit)	
15	Question Papers Of Mid Term Exam-I	
16	Marks and Gap Analysis in Mid Term I	
17	Remedial Action Taken To Remove the Gaps after mid Term I	
18	Question Papers Of Mid Term Exam-II	
19	Gap Analysis in Mid Term II	
20	Remedial Action Taken To Remove the Gaps after mid Term II	
21	Model Question Paper With Key Solution	
22	University Question Paper (Last one year)	
23	Student Performance Report	
24	Result Analysis	

VISION & MISSION OF INSTITUTE

Vision

EMPOWERING STUDENT WITH RECENT AND EMERGING TECHNOLOGIES TO CREATE INNOVATIVE TECHNICAL LEADERS

CAPABLE OF CONTRIBUTING TO INDUSTRIAL AND SOCIETAL NEEDS FOR BETTERMENT OF MANKIND ACROSS THE GLOBE.

Mission

M1: TO PROVIDE DYNAMIC LEARNING ENVIRONMENT TO STUDENTS BY PROVIDING CONSTANT EXPOSURE TO LATEST TECHNOLOGIES BY LINKING CLOSELY WITH THE INDUSTRIES.

M2: TO ESTABLISH EFFECTIVE INTERFACE WITH INDUSTRY TO OBTAIN LIVE PROBLEMS TO ENHANCE CRITICAL THINKING AND PROBLEM SOLVING SKILLS AMONG STUDENTS AND CONSULTANCY PROJECTS FOR FACULTY.

M3: TO PROVIDE AVENUES AND OPPORTUNITIES TO FACULTY FOR DOMAIN SPECIFIC TRAININGS AND QUALIFICATION UPGRADATION.

M4: TO DEVELOP ETHICAL LEADERS WITH STRONG COMMUNICATION SKILLS.

VISION & MISSION OF DEPARTMENT

Department Vision

To increase students learning of fundamentals for designing and planning of buildings and latest technologies through industry-aligned project-based learning which will help in transforming students to be good civil engineering professionals leading to innovation and incubation of new ideas.

Department Mission

M1: To create experimental learning through solving problems of Government, Society, Smart Cities, Industry and other entities.

M2: To teach the latest technologies to the students as beyond the syllabus activity so that they are updated and industry ready.

M3: To enable engineering students understand industry-aligned technologies and learn to find solutions from their early engineering days and this is the only way to produce globally relevant engineers solving real-life problems applying current technologies.

M4: To enable students to generate projects through problem faced by and requirement of Smart cities, industry, Government and other entities whereby those outlined problem statements are to be studied deeply by a group of faculty members to convert them into real-time project format.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1. To provide an in-depth understanding of the fundamentals of Civil Engineering and create a foundation for lifelong learning to facilitate a progressive career in the construction Industry, as an entrepreneur and in pursuit of higher studies.

PEO2. To equip the students with technical and analytical skills to develop innovative solutions to complex real-life problems using existing and novel technologies. To equip the students with good communication and interpersonal skills, inter-disciplinary teamwork and leadership skills to enable them to fulfil professional responsibilities.

PEO3. To expose them to various contemporary issues which will enable them to become ethical and responsible towards themselves, co-workers, Society and the Nation.

PEO4. To make the student's industry ready by imparting education related to the latest technologies so that they can grab future industry jobs.

PROGRAM SPECIFIC OUTCOMES (PSO's)

PSO1: To be aware of and initiate some-work on future technologies and new developments which may impact the future Industry 4.0.

PSO2: Hands on training on upcoming technologies and project-based learning.

PSO3: Get exposure to BIM (Building Information Modelling).

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

PO01. Engineering knowledge: Acquire the knowledge of mathematics, science, engineering fundamentals, and electronics and communication engineering, with an ability to understand, analyze and apply to the solution of engineering problems.

PO02. Problem analysis:Identify, formulate, research literature, analyse and solve electronics and communication engineering problems.

PO03. Design/development of solutions:Design solutions for electronics and communication engineering problems with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO04. Conduct investigations of complex problems: Design and conduct experiments, analyse and interpret data, and synthesize information to provide valid conclusions.

PO05. Modern tool usage: Apply appropriate techniques, resources, and modern hardware and software engineering tools to solve electronics and communication engineering problems.

PO06. The engineer and society: Apply reasoning to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO07. Environment and sustainability: Demonstrate the understanding of the impact of the professional engineering solutions in societal and environmental contexts, and need for sustainable development.

PO08. Ethics: Demonstrate the knowledge of professional and ethical responsibilities.

PO09. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10.Communication: Comprehend and communicate confidently and effectively in both verbal and written form.

PO11. Project management and finance:Apply the engineering and management principles for efficient project management.

PO12. Life-long learning: Recognize the need and acquire confidence for independent and life-long learning.

CO No.	Mapping	Statement
1	Understanding	Students are able to learn and use numerical methods for interpolating the data.
2	Understanding	Students are able to learn and use numerical methods for solving the transcendental and polynomial equations.
3	Applying	Students are able to solve engineering problems using Laplace Series.
4	Applying	Students are able to solve engineering problems using Fourier Series.
5	Understanding	Students are able to Solve problems in engineering domain related to Linear Algebra.

COURSE OUTCOMES (COs) OF THE SUBJECT

Course Outco me	PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	2	0	1	1	0	0	0	0	0	0	1	0	0	0
CO2	2	2	0	1	1	0	0	0	0	0	0	1	0	0	0
CO3	2	2	0	1	1	0	0	0	0	0	0	1	0	0	0
CO4	1	1	0	1	1	0	0	0	0	0	0	1	0	0	0
CO5	2	2	0	1	1	0	0	0	0	0	0	1	0	0	0

COS MAPPING WITH POs AND PSOs

UNIVERSITY ACADEMIC CALENDAR

Semester	1	ш	V	VII
Induction Program	17.08.2023			
Commencement of Classes	11.09.2023	24.08.2023	04.09.2023	04.09.2023
Commencement of First Mid Term	02.11.2023	03.10.2023	05.10.2023	05.10.2023
Commencement of Second Mid Term	07.12.2023	16.11.2023	20.11.2023	20.11.2023
Last Working Day	23.12.2023	02.12.2023	02.12.2023	30.11.2023
Commencement of Practical Exams	02.01.2024	04.12.2023	23.12.2023	14.12.2023
Commencement of Theory Exams	18.01.2024	14.12.2023	08.12.2023	07.12.2023

Particulars	B.Tech-I	B.Tech- III	B.Tech- V	B.Tech- VII			
Commencement of classes	11-09-2023	24-08-2023	04-09-2023	04-09-2023			
Last Working Day	23-12-2023	02-12-2023	02-12-2023	30-11-2023			
Course Progression Report-I	25-10-2023	27-09-2023	27-09-2023	27-09-2023			
First Mid Term Exam	02-11-2023	03-10-2023	05-10-2023	05-10-2023			
Remedial Class-I	14-11-2024	16-10-2023	16-10-2023	16-10-2023			
Course Progression Report-II	01-12-2023	10-11-2023	10-11-2023	10-11-2023			
Second Mid Term Exam	07-12-2023	16-11-2023	20-11-2023	20-11-2023			
Remedial Class-II	20-12-2023	29-11-2023	29-11-2023	29-11-2023			
Commencement of Theory Exam	18-01-2023	14-12-2023	08-12-2023	07-12-2023			
Commencement of Practical Exam	01-01-2024	04-12-2023	23-12-2023	14-12-2023			

Evaluation Scheme

FACULTY DETAILS:

Name of the Fa Designation	aculty : Dr. Kalpana Fatawat : Asssociate Professor
Department 1. TARGET	: a) Percentage Pass : 100% b) Percentage I class: 60 %
2. METHOD C	DF EVALUATION
2.1.	Continuous Assessment Examinations (Mid-Term 1, Mid-Term 2)
2.2.	Assignments
2.3.	Quiz
2.5. Others	Semester Examination

3. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

1. Take the help of creative tools to stimulate creativity. Include demonstration or forms of visual exercises that will excite the young minds and capture their interest.

Signature of Faculty:

Signature of HOD

UNIVERSITY SYLLABUS

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC2-01: Advance Engineering Mathematics-I

3 Credits Max. Marks: 100 (IA:30, ETE:100) 3L:0T:0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Numerical Methods – 1: Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	10
2	Numerical Methods – 2: Numerical solution of ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge- Kutta method of fourth order for solving first and second order equations. Milne's and Adam's predicator-corrector methods. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.	8
3	Laplace Transform: Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace transforms method.	10
4	Fourier Transform: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations only).	7
5	Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z- transform, application of Z-transform to difference equation.	5
	Total	40

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Syllabus of 2nd Year B. Tech. (ECE) for students admitted in Session 2021-22 onwards Page 1

PRESCRIBED BOOKS

- 1. Advanced Engineering Mathematics, Erwin and Kreyszig, Wiley-India
- 2. Advanced Engineering Mathematics, H.K. Dass, Sultan Chand & Sons.
- 3. Advanced Engineering Mathematics-1, Dr. Gokhroo and Dr. Jain, Unique books.

WEEKLY TIME TABLE OF THE TEACHER

Section A

Day	1	2	3	4	5	6	7]	
Monday		AEM							
Tuesday		AEM						COURSE-	
Wednesday		AEM						PLAN	
Thursday	AEM								
Friday								-	
Saturday								-	
UNIT	Lect.			TOPI	CS		Te	aching	
	No.							ethods/	
				D : :/ 1:00				hing Aids	
	1			Finite diff	erences			te Board, onstration	
	2		Rela	tion betwe	en operators	5		te Board,	
								onstration	
	3	Interpo		ng Newton difference		nd backward	l Whi	te Board	
	4	Ga	uss's forw		ckward inte	rpolation	Whi	te Board	
				formu	lae				
	5		Striling central difference formula					te Board	
	6		Lagrange	e's Method	l of interpola	ation	Whi	te Board	
	7		Newton's divided difference formula					te Board	
	8		Trapezoidal rule					te Board	
	9		Sin	npson 1\3 a	and 3\8 rule		Whi	te Board	
	10		Doubt clearing session				Whi	te Board	
	11		Tailor's series				Whi	te Board	
	12		Euler an	d modified	l Euler's me	thod	Whi	te Board	
	13		Runge-Kutta Method				Whi	te Board	
	14			Milne's and Adam's Prdicator and Corrector method					
	15			Bisection	method		Whi	te Board	
	16		Nev	vton-Raph	son method		Whi	te Board	
	17		R	legula-Fals	i method		Whi	te Board	

	18	Doubt clearing session	White Board
3	19	Laplace transform	White Board
	20	Properties of Laplace transform	White Board
	21	Unit step function, Dirac delta function, Heaviside function	White Board
	22	Laplace transform of Periodic functions	White Board
	23	Laplace transform of Periodic functions	White Board
	24	Finding inverse Laplace transform	White Board
	25	Convolution theorem	White Board
	26	Evaluation of integrals by Laplace transform	White Board
	27	Evaluation of integrals by Laplace transform	White Board
	28	Solving ODE by Laplace transform	White Board
4	29	Fourier complex, sine and Cosine transform	White Board
	30	Fourier complex, sine and Cosine transform	White Board
	31	Properties and formula	White Board
	32	Inverse Fourier transform	White Board
	33	Convolution theorem	White Board
	34	Application of Fourier transforms to Partial and ordinary differential equations	White Board
	35	Application of Fourier transforms to Partial and ordinary differential equations	White Board
5	36	Z-transform -definition	White Board
	37	Properties and formulae	White Board
	38	Convolution theorem	White Board
	39	Inverse Z-transform	White Board
	40	Application of Z-transform to difference equation	White Board

Signature of Faculty:

Signature of HOD

Assignment – 1

2. The area A of a circle of diameter d is given for the following values:

d	80	85	90	95	100
А	5026	5674	6362	7088	7854

Find the approximate values of the areas of circles of diameters 82.

3. Use Stirling formula to find Y(28) if :

Х	20	25	30	35	40
Y(x)	49225	48316	47236	45926	44306

4. Use Simpson's 1/3 and $3\8$ rule to evaluate the following: integrate between 0 to 1 (dx1+x2)

5. By using NR method, find the root of x4-x-10=0 which is nearer to x=2, correct to three places of decimal.

Assignment – 2

- 1. What is the finite Fourier sine transform of cos nx.
- 2. What is the change of scale property in Fourier transform.
- 3. If U(n)=3U(n-1) then find F(z).
- 4. What is the inverse Laplace of 1/(Z-1).
- 5. Solve: $dV/dt = d^2V/dx^2$, x lie between –infinity to +infinity, t>0, if V=f(x) when t=0

Unit 1

- 1. Explain the shift operator.
- 2. Explain the Lagrange's interpolation formula.
- 3. What is simpson's 3/8 rule?
- 4. When do we apply Lagrange's method ?
- 5. When do we apply Striling's central formula ?

Unit 2

- 1. Explain the Runge-Kutta fourth order method.
- 2. What is the value of logx for x = 4,5,6,7.
- 3. What will be the next value of x if bisection method is used and x1=0 and x2=1.

Unit 3

- 1. Define the Laplace tranformation.
- 2. What is the Shifting property in LT.
- 3. What is the inverse LT of sinh at.

Unit 4

- 1. What are the application of fourier transformation in the field of engineering.
- 2. What is the finite Fourier sine transform of cos nx.
- 3. What is the change of scale property in Fourier transform.

Unit 5

- 1. If U(n)=3U(n-1) then find F(z).
- 2. What is the inverse Laplace of 1/(Z-1).
- 3. What are the partial fractions of F(z)=1/(z-3)(z-2).

MCQ

1. To find the missing value for a data set having unequal interval, which method is appropriate:

i)	Simpson 1/3 rule for unequal interval
ii)	Newtons method for unequal interval
iii)	Lagrange's method for unequal interval
iv)	All three
v)	Only ii and iii
2.	μ is called:
i.	shift operator
ii.	average operator
iii.	Sheppard operator
iv.	Both b and c
3.	$E = e^{hD} = ?$
i)	I
ii)	I+∆
iii)	I+∇
iv)	E+I
4.	Bisection method guaranteed converges when:
i)	Function is real and contiguous.
ii)	Two initial guess are real.
iii)	Only i
iv)	Both i and ii
5.	Which method is linear and slow converges
i)	Bisection method
ii)	Runge Kutta method
iii)	Euler method
iv)	Both I and ii

- 6. Which method has convergence of order quadratic?
- i) Euler method
- ii) Newton Raphson method
- iii) Tayor's method
- iv) Runge-Kutta method

7.

If $L\{f(t)\}=F(s)=rac{3(s+3)}{s^2+6s+8}$, and f(0.5) is given by $K\left(rac{e+1}{e^2}
ight)$, then find the value of K

i) K=1

ii) K=2

- iii) K=1.5
- iv) K=0
- 8. The inverse Laplace of ¹

s+1

- i) e(t)
- ii) e(-t)
- iii) sin t
- iv) both i and ii

9.

What is the advantage of FTIR (FTIR Fourier Transform Infrared spectrometer)?

Improved frequency reproducibility
 Slower operation
 It is an easy to use, fast and versatile technique for IR sampling.
 Solid, pastes, gels, powders, liquid can be analysed with little or no preparation.

Consider a signal defined by

$$x\left(t
ight)=egin{cases} e^{\,j10t} & for\,|t|\leq 1\ 0 & for\,|t|>1 \end{cases}$$

Its Fourier Transform is

1. $\frac{2\sin(\omega-10)}{\omega-10}$

- 2. $\frac{2e^{j10}\sin(\omega-10)}{\omega-10}$
- 3. $\frac{2sin\omega}{\omega-10}$

4. $\frac{e^{j10\omega}2sin\omega}{\omega}$

Concept:

The Fourier Transform of a continuous-time signal x(t) is given as:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \ e^{-j\omega t} \ dt$$

Analysis:

Given:

$$\begin{aligned} \mathbf{x}(t) &= \mathrm{e}^{j10t} \text{ defined from t} = -1 \text{ to } 1. \\ X(\omega) &= \int_{-1}^{1} e^{j10t} \cdot e^{-j\omega t} dt = \int_{-1}^{1} e^{j(10-\omega)t} dt \\ X(\omega) &= \left. \frac{e^{j(10-\omega)t}}{j(10-\omega)} \right|_{-1}^{1} = \frac{2\sin(\omega-10)}{(\omega-10)} \end{aligned}$$

Ans (1)

If the discrete-time sequence x(n), $n \ge 0$ is defined to be u(n), then the Z transform X(z) is (for |z|>1):

1.	$\frac{1}{z-1}$
2.	$\frac{z}{z+1}$
3.	$\frac{1}{z+1}$
4.	$\frac{z}{z-1}$

Given x(n) = u(n)

$$X(z) = \sum_{n=0}^{\infty} z^{-n}$$

$$X(z) = \frac{1}{1-z^{-1}}$$

$$X(z) = \frac{z}{z-1}$$

Ans 4

For an LTI system, the transfer function is $H(z) = \frac{z}{(z-0.2)(z-0.5)}$; |z| > 0.5, the system is _____ and _____. 1. causal IIR, unstable 2. causal FIR, stable 3. noncausal FIR, stable 4. causal IIR, stable

Explanation

Teaching and Learning resources unit-wise:

Unit-1

https://youtu.be/xYs72hkKM1M https://nptel.ac.in/courses/122/102/122102009/

- Unit-2 <u>https://www.youtube.com/watch?v=WIQclObEAiA</u> <u>https://nptel.ac.in/courses/111/105/111105121/</u>
- Unit-3 <u>https://www.youtube.com/watch?v=c9NibpoQjDk</u> <u>https://nptel.ac.in/courses/111/105/111105123/</u>
- Unit-4 <u>https://www.youtube.com/watch?v=lkAvgVUvYvY</u> <u>https://www.youtube.com/watch?v=6spPyJH6dkQ</u> https://www.youtube.com/watch?v=A58pHobCLwA

Unit-5

https://nptel.ac.in/courses/108/104/108104100/ https://www.youtube.com/wch?v=Q9IKRDcN_jE

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR B. TECH 2nd – YEAR (III SEM.) – MT- I Advanced Engg. Mathematics (3EC201,3CE201, 3ME201)

Time: 2Hr.

Max. Marks:70

Part- A (20 Marks)

Note:

1) The paper is divided into 2 parts: Part-A and, Part-B.

2) Part-A contains 10 questions and carries 2 mark each.

3) Part-B contains 5 questions. Each question is having two options and carries 10 marks each.

A.	Write down the formula for Sterling's central difference interpolation.	
В.	Prove that $\Delta \log \log f(x) = \log \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$	C01
C.	Evaluate $(E^2 x^3)$ if h=2	CO1
D.	Explain the Newton-Raphson Method.	CO2
Е.	Explain the Runge-Kutta method of fourth order.	CO2
F.	Write the formula for Milne's and Adam's predicator corrector method.	CO2
G.	Solve $u_n - 3u_{n-1} = 0$, if $u_0 = 1$, $n \ge 1$	CO5
H.	Find the inverse Z-transform of $F(z) = \frac{1}{z-a}$ when $ z < a $	CO5
I.	Find the Z –transform of discrete unit step.	CO5
	$u_n = 1$ for $n \ge 0$	
	$= 0 \qquad \text{for} n < 0$	
J.	Find the Z -Transform of $u_n = a^n$; $n \ge 0$	CO5

Part- B (50 Marks)

1.	Use Striling's formula to find y_{28} given that $y_{20}=49225$, $y_{25}=48316$, $y_{30}=47236$, $y_{35}=45926$, $y_{40}=44306$	CO1
	OR	

1 . Evaluate \int_0^1	$\frac{dx}{1+x^2}$ using, Simpson 1\3 th and 3\8 th rule.	CO1

2 . Use Runge-Kutta method of fourth order to solve $\frac{dy}{dx} = -2xy^2$, $y(0) = 1$ With $h = 0.2$. Also find approximate value of $x = 0.2$ and $x=0.4$.	CO2
OR	
2.2.By using Newton-Raphson method find the root of x^4 -x-10=0	CO2
Which is nearer to $x=2$, correct to three decimal places.	

3. Use Z-transform to solve the following equation; $u_{n+2} + 4u_{n+1} + 3u_n = 2^n$	CO5
Given $u_0 = u_1 = 0$	
OR	
3. Find the inverse Z –transform of $F(z) = \frac{1}{(z-3)(z-2)}$	CO5
If ROC is i) $ z < 2$ ii) $2 < z < 3$ iii) $ z > 3$	

4 . i) Find t	he value of	f(5) from	the following	ng table by u	using	CO1
Lagra	inge's inte	erpolation fo	rmula :			
X	1	2	3	4	7	
f(x)	2	4	8	16	128	
ii) Taking	h as the in	terval of diff $e^x = \left(\frac{\Delta^2}{E}\right)$	ferencing ,single $\int e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$	how that :		
		0)R			

4.Appl	y Milne's predicate-correcto	or method to solve the follo	owing C	C O2
diffe	rential equation: $\frac{dy}{dx} =$	$x-y^2$, at x=0.8 Given	n that	
	Y(0)=0	Y(0.2)=0.02		
	Y(0.4)=0.0795	Y(0.6)=0.1762		

5. A. Find the inverse Z-transform of $F(z) = \frac{z}{(z-1)(z-2)}$, $ Z > 2$	CO5
B. Find Z-transform of $u_n = c^n \cosh an, n \ge 0$.	
OR	
5.Use Regular-Falsi method, to find the real root of the equation $xx - 1.2 = 0$ correct to five places of decimal.	CO2

Sr. No	RTU Roll Number	Name of the Student	M-1 Marks	Remark
			(70)	(Remedial
				Class need
				or not –
				Y/N)
1	22ETCCE001	ANKIT KUMAR	48	N
2	22ETCCE002	ARMAAN CHAUHAN	42	N
3	22ETCCE003	AYUSH SINGH JHALA	49	N
4	22ETCCE004	PARIDHI NINAMA	58	N
5	22ETCCE005	PRAVEEN DANGI	50	N
6	22ETCCE006	ROSHNI TABIYAR	60	N

Marks and Gap Analysis of Mid-Term 1

Signature of Faculty:

Signature of HOD

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR

B. TECH 2nd – YEAR (III SEM.) – MT-III

Advance Engineering Mathematics-1 (3EC201, 3CE201, 3ME201)

Time: 3 Hr

Max. Marks: 70

Note:

- 1) The paper is divided into 2 parts: Part-A and, Part-B.
- 2) Part-A contains 10 questions and carries 2 mark each.
- 3) Part-B contains 5 questions. Each question is having two options and carries 10 marks each.

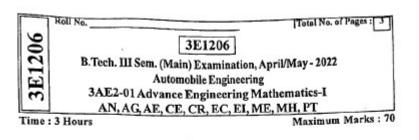
Part- A (20 Marks)

A.	Evaluate L{cos at}.	CO3
B.	What is the inverse Laplace transform of 1\s-a.	CO3
C.	Write Dirichelet's conditions.	CO4
D.	Write Fourier coefficients	CO4
E.	Write the Heaviside's Unit step function and the Error function.	CO3
F.	Write the Shifting Property for Laplace transformation.	CO3
G.	Explain the Fourier transformation.	CO4
H.	Find the Fourier cosine transform of the function.	CO4
I.	Find the Z Transform of $u_n = a^n$; $n \ge 0$	CO5
J.	Solve $u - 3u = 0, if u = 1, n \square 1$	CO5

1. Find Laplace transform of t e(t) sin 4t.	CO3
OR	
2. Prove that $L{sint/t}=tan(-1)(1\s)$ and hence find $L{sint/t}$	CO3
3. Find inverse Laplace of (2s2-4)/(s+1)(s-2)(s-3)	CO3
OR	
Solve : $(D2+9)y=acos3t$ with $y(0)=b$, $y'(0)=c$.	CO3
Find the Fourier sine and cosine transform of the function e(-x).	CO4
OR	
Find the function if Fourier transform is e(-as).	CO4
Solve: $dV/dt = d^2V dx^2$, if	CO4
V=0 when x=0 and t is positive. V(x,t) is bounded x and t both are positive.	
V=0 when x is greater than equal to 1, else 1 when t=0	
OR	
Solve: $dV/dt = d^2V/dx^2$, x lie between –infinity to +infinity, t>0	CO4
f V=f(x) when t=0	
Find the z-tranform of 9.	CO5
OR	
10. Find inverse z-transform of $F(z)=z^2/(z-1/4)(z-1/5)$.	CO5

Part- B (50 Marks)

<u> Mid Term Exam – II</u>


Sr. No	RTU Roll Number	Name of the Student	M-1	Remark
			Marks (70)	(Remedial
				Class need
				or not –
				Y/N)
1	22ETCCE001	ANKIT KUMAR	55	Ν
2	22ETCCE002	ARMAAN CHAUHAN	45	Ν
3	22ETCCE003	AYUSH SINGH JHALA	54	Ν
4	22ETCCE004	PARIDHI NINAMA	64	Ν
5	22ETCCE005	PRAVEEN DANGI	57	Ν
6	22ETCCE006	ROSHNI TABIYAR	66	Ν

Marks and Gap Analysis of Mid-Term II

Signature of Faculty:

Signature of HOD

Model Question Paper

Instructions to Candidates:

Attempt all ten questions From Part A, All five Questions from Part B and three questions out of five questions from Part C.

Schematic diagrams must be shown wherever necessary. Any data missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination (As mentioned in form No.205)

PART - A

(Word limit 25)

(10×2=20)

2. Prove that, $\left(\frac{\Delta^2}{E}\right)x^3 = 6x(if h=1)$

1.

Evaluate, $\Delta^6(ax-1)(bx^2-1)(cx^3-1)$

Using Newton-Raphson's method, find the root of x⁴-12x+7=0 which is near to x=2.

Find the z-transform of unit impulse function which is given by $\delta_n = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$

5. Find inverse Z Transform of $\frac{5z}{(2-z)(3z-1)}$. 6. Find the Laplace transform of $f(t) = \begin{cases} \sin t & 0 < t < \pi \\ 0 & t > \pi \end{cases}$. 7. Find inverse Laplace transform of $\frac{s+2}{(s-2)^3}$.

3E1206 /2022

(1)

Contd....

- Write the Formulae of Fourier complex transform Fourier cosine transform and their inverse also.
- 9. Write the formulae of Simpson 1/3 rule and Simpson 3/8 rule.
- 10. By using Picard's method, solve the equation $\frac{dy}{dx} = y x$ with x = 0, y = 2 upto third order of approximation.

PART - B

,				(Word li	mit 100)			
J.	From the following table find the number of students who obtained						(5×4=20)	
	a)	Less than 45 r						
	b)	More than 45	marks.		* 3			
	Ma	rks obtained:	30-40	40-50	50-60	60-70	70-80	
	No	's of students:	31 `	42	51	35	31	
2/		d the approximation $x^3 - 3x + 4$						

3. Find the Fourier Sine and Cosine transform of
$$f(x) = \begin{bmatrix} x & for & 0 < x \le 1 \\ 2-x & for & 1 < x < 2 \\ 0 & for & x \ge 2 \end{bmatrix}$$

- $\cancel{If } \overline{u}(z) = \frac{2z^2 + 5z + 14}{(z-1)^4} \text{ for the sequence } \{u_n\}, n \ge 0 \text{ Evaluate } u_2 \text{ and } u_3.$
- 5. Find Inverse Laplace transform of $\frac{S}{S^4 + 4a^4}$

PART - C (Any Three)

(3×10=30)

- 1. Solve $(D^2+9)y = \cos 2t$, given that y(0)=1. $y(\pi/2)=-1$.
- 2. Obtain Fourier transform of $f(x) = \begin{cases} x^3 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$

Hence evaluate
$$\int_{a}^{\infty} \cos\left(\frac{as}{2}\right) \left[\frac{(a^{2}s^{2}-2)\sin as + 2as\cos as}{s^{3}}\right] ds$$

3. Solve by z transform of $u_{n+2} - 6u_{n+1} + 8u_n = 2^n + 6n$.

4. Using Milne's Predictor-Corrector Method, obtain the value of y for x = 0.4 for the

following equation $\frac{dy}{dx} = 2e^x - y$, given that x : 0 0.1 0.2 0.3 2.01 2.04 2.09 y: 2 A slider in a machine moves along a fixed straight rod. Its distance x(cm) along the rod is given below for various values of time t(sec) 0.6 0.4 0.5 0.1 0.2 0.3 $t \Rightarrow 0$ 31.43 32.98 33.54 33.97 33.48 32.13 $x \Rightarrow 30.28$ Evaluate i) Velocity for t = 0.1, 0.5 and 0.3 ii) Acceleration for t = .02, .33 and .58

Techno India NJR Institute of Technology

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

RESULT ANALYSIS

S.NO.	RTU ROLL NUMBER	NAME OF STUDENT	END TERM MARKS	SESSIONAL MARKS	TOTA L	
		MAX MARKS	70	30	100	
1.	22ETCCE001	ANKIT KUMAR	27	22	49	
2.	22ETCCE002	ARMAAN CHAUHAN	0	19	19	
3.	22ETCCE003	AYUSH SINGH JHALA	2	22	24	
4.	22ETCCE004	PARIDHI NINAMA	15	26	41	
5.	22ETCCE005	PRAVEEN DANGI	11	23	34	
6.	22ETCCE006	ROSHNI TABIYAR	18	27	45	

TOTAL	PASS	FAIL	ABSENT	PASS %
6	3	3	0	50

Indirect Assessment:

Overall Teacher Self Assessment (at the completion of course) in terms of course objective and outcomes

At the completion of course I find that the set outcomes (see course outcome table) were achieved at the satisfactory level.

Methodology to identify bright student

I follow very simple techniques of observation and interaction. I observe the intellectual level of the students by asking simple questions which are basics of the mathematics and interact with them regularly. I Pay attention to each and every students to know how they are utilizing their brain to perform the different tasks or activities.

Efforts to keep students engaged

I start my lecture by asking school level problems and move towards the topic to be taught. In between I ask short questions to which they can answer by looking at their notes, so that they can remember. One problem I solve with the help of the students and at the end I conduct MCQ. If I am continuing topic taught in previous class, I start with making students recalling it and ask MCQ questions.