(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Course File

Subject Title/Subject Code: Design of Concrete Structures

5CE4-03 Semester: V Year: III

Name of the Faculty: Mr. Rakesh Yadav

E-mail id: rakesh.yadav@technonjr.org

Class Schedule

Total Number of Lectures: 40

i) Course Objective

The course aims to equip students with fundamental knowledge and skills in the design of reinforced concrete (RC) structures, adhering to relevant Indian Standards (IS) codes. Students will learn various design methodologies, including the Working Stress Method and Limit State Design (LSM), to analyze and design beams, slabs, columns, and footings. Emphasis is placed on understanding structural behavior, reinforcement detailing, serviceability limits, and the concepts of shear, torsion, bond stress, and deflection control, preparing students to tackle practical challenges in RC design and construction.

S. No.	CONTENT / ITEM NO.	PAGE NO.	STATUS
1	Vision And Mission Of The Institute		
2	Vision And Mission Of The Department		
3	Program Educational Objective Of Department (PEO's)		
4	Program Outcomes Of Department (PO's)		
5	Course Outcome (COs)		
6	COs mapping with Pos and PSOs		
7	Academic Calendar		
8	Evaluation Scheme		
9	Course Syllabus		
10	Prescribed Books		
11	Copy Of Time Table		
12	Course Schedule Plan		
13	Assignment Sheet (Unit Wise)		
14	Quiz Questions (One From Each Unit)		
15	Question Papers Of Mid Term Exam-I		
16	Marks and Gap Analysis in Mid Term I		
17	Remedial Action Taken To Remove the Gaps after mid Term I		
18	Question Papers Of Mid Term Exam-II		
19	Gap Analysis in Mid Term II		
20	Remedial Action Taken To Remove the Gaps after mid Term II		
21	Model Question Paper With Key Solution		
22	University Question Paper (Last one year)		
23	Student Performance Report		
24	Result Analysis		

INDEX - COURSE FILE

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

VISSION & MISSION OF INSTITUTE

Vision

Empowering student with recent and emerging technologies to create innovative technical leaders capable of contributing to industrial and societal needs for betterment of mankind across the globe.

Mission

M1: To provide dynamic learning environment to students by providing constant exposure to latest technologies by linking closely with the industries.

M2: To establish effective interface with industry to obtain live problems to enhance critical thinking and problem-solving skills among students and consultancy projects for faculty.

M3: To provide avenues and opportunities to faculty for domain specific trainings and qualification upgradation.

M4: To develop ethical leaders with strong communication skills.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

VISION & MISSION OF DEPARTMENT

Department Vision

To increase students learning of fundamentals for designing and planning of buildings and latest technologies through industry-aligned project-based learning which will help in transforming students to be good civil engineering professionals leading to innovation and incubation of new ideas.

Department Mission

M1: To create experimental learning through solving problems of Government, Society, Smart Cities, Industry and other entities.

M2: To teach the latest technologies to the students as beyond the syllabus activity so that they are updated and industry ready.

M3: To enable engineering students, understand industry-aligned technologies and learn to find solutions from their early engineering days and this is the only way to produce globally relevant engineers solving real-life problems applying current technologies.

M4: To enable students to generate projects through problem faced by and requirement of Smart cities, industry, Government and other entities whereby those outlined problem statements are to be studied deeply by a group of faculty members to convert them into real-time project format.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs 1: To provide an in-depth understanding of the fundamentals of Civil Engineering and create a foundation for lifelong learning to facilitate a progressive career in the construction Industry, as an entrepreneur and in pursuit of higher studies.

PEOs 2: To equip the students with technical and analytical skills to develop innovative solutions to complex real-life problems using existing and novel technologies. To equip the students with good communication and interpersonal skills, inter-disciplinary teamwork and leadership skills to enable them to fulfill professional responsibilities.

PEOs 3: To expose them to various contemporary issues which will enable them to become ethical and responsible towards themselves, co-workers, Society and the Nation.

PEOs 4: To make the student's industry ready by imparting education related to the latest technologies so that they can grab future industry jobs.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

PROGRAM SPECIFIC OUTCOMES (PSO's)

PSO1: To be aware of and initiate some-work on future technologies and new developments which may impact the future Industry 4.0.

- **PSO2:** Hands on training on upcoming technologies and project-based learning.
- **PSO3:** Get exposure to BIM (Building Information Modeling).

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

PROGRAMME OUTCOMES (POs)

A student will develop:

PO01. ENGINEERING KNOWLEDGE: An ability to apply knowledge of Mathematics, Science and Engineering Fundamentals in Electronics and Communication Engineering.

PO02. PROBLEM ANALYSIS: Ability to analyze and interpret data by designing and conducting experiments. Develop the knowledge of developing algorithms, designing, implementation and testing applications in electronics and communication related areas.

PO03. DESIGN/ DEVELOPMENT OF SOLUTION: An ability to Design a system Component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

PO04. CONDUCTION OF INVESTIGATION OF COMPLEX PROBLEMS: Ability to Identify, formulate and solve engineering problems.

PO05. MODERN TOOL USAGE: An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

PO06. THE ENGINEERING AND SOCIETY: Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.

PO07. ENVIRONMENT & SUSTAINABILITY: Understand the impact of professional engineering solution in societal and environmental contexts, and demonstrate the knowledge of, and need of sustainable development.

PO08. ETHICS: An ability to understand the professional, social and ethical responsibility.

PO09. INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. COMMUNICATION: An ability to Communicate effectively in order to succeed in their profession such as, being able to write effective reports and design documentation, make effective presentations.

PO11. PROJECT MANAGEMENT & FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in team, to manage projects and in multidisciplinary environment.

PO12. LIFE-LONG LEARNING: Recognize the need and an ability to engage in life-long learning.

COURSE OUTCOMES (COs) OF THE SUBJECT

CO No.	Mapping	Statement
CO35403.1	Remembering	Recall fundamental concepts, design principles, and relevant IS codes associated with reinforced concrete (RC) structures
CO35403.2	Understanding	Understand the role of different types of reinforcement, design assumptions, and the principles of Working Stress Method and Limit State Design (LSM)
CO35403.3	Applying	Apply LSM principles to design RC beams, slabs, and columns for various structural conditions
CO35403.4	Analyzing	Apply LSM principles to design RC beams, slabs, and columns for various structural conditions
CO35403.5	Evaluating	Evaluate the structural performance of RC members, ensuring safety, stability, and adherence to design standards.

COS MAPPING WITH POs AND PSOs

Course															
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO35403.1	3	3	3	3	0	0	0	1	1	0	0	1	2	1	1
CO35403.2	3	2	2	3	0	0	0	1	1	0	0	1	2	1	1
CO35403.3	2	2	2	1	0	0	0	2	1	0	0	1	2	1	1
CO35403.4	2	2	2	2	0	0	0	0	0	0	0	1	2	1	1
CO35403.5	2	2	2	1	0	0	0	2	1	0	0	1	2	1	1
CO35403 (AVG)	2.4	2.2	2.2	2	0	0	0	1.2	0.8	0	0	1	2	1	1

UNIVERSITY ACADEMIC CALENDAR

Academic Calendar for odd Semester for Session

RAJASTHAN TECHNICAL UNIVERSITY KOTA							
Course: Bachelor of Technology (B.TECH.) for Odd Semester							
Semester	1	Ш	V	VII			
Induction Program	17.08.2023						
Commencement of Classes	11.09.2023	24.08.2023	04.09.2023	04.09.2023			
Commencement of First Mid Term	02.11.2023	03.10.2023	05.10.2023	05.10.2023			
Commencement of Second Mid Term	07.12.2023	16.11.2023	20.11.2023	20.11.2023			
Last Working Day	23.12.2023	02.12.2023	02.12.2023	30.11.2023			
Commencement of Practical Exams	02.01.2024	04.12.2023	23.12.2023	14.12.2023			
Commencement of Theory Exams	18.01.2024	14.12.2023	08.12.2023	07.12.2023			
Winter Break							

Academic Calendar of Institute

Academic Calendar for odd semester for session 2023-24

	Academic Calendar Odd Semester 2022-23								
	Particulars	B.Tech-I	B.Tech- III	B.Tech- V	B.Tech- VII				
	Commencement of classes	09-11-2022	08-08-2022	19-09-2022	17-08-2022				
	Last Working Day	25-02-2023	24-12-2022	07-01-2023	03-12-2022				
	Course Progression Report-I	10-12-2023	22-09-2022	01-11-2022	17-09-2022				
	First Mid Term Exam	15-12-2022	29-09-2022	07-11-2022	22-09-2022				
+ 4	Remedial Class-I	26-12-2022	10-10-2022	17-11-2022	06-10-2022				
	Course Progression Report-II	04-02-2023	26-11-2022	17-12-2022	11-11-2022				
	Second Mid Term Exam	09-02-2023	01-12-2022	22-12-2022	16-11-2022				
	Remedial Class-II	20-02-2023	10-12-2023	05-01-2023	25-11-2022				
	Commencement of Theory Exam	16-03-2023	17-01-2023	18-01-2023	07-12-2022				
	Commencement of Practical Exam	27-02-2023	03-01-2023	30-01-2023	12-12-2022				

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Evaluation Scheme

FACULTY DETAILS:

Name of the Facu	lty :	
	Rak	
esh Yadav Design	ation	:Assistant Proffesor
-		
Department	•	Civil Engineering
Department	•	

1. TARGET

a) Percentage Pass:	100%
b) Percentage I class:	60 %

2. METHOD OF EVALUATION

Assignments / Seminars
Mini Projects
Quiz
Semester Examination

3. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

4. Take the help of creative tools to stimulate creativity. Include slide presentations, demonstration or forms of visual exercises that will excite the young minds and capture their interest.

Signature of Faculty:

Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

UNIVERSITY SYLLABUS

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

^{3rd} Year - V Semester: B.Tech. (Civil Engineering)

5CE4-03: DESIGN OF CONCRETE STRUCTURES

Cred	Credit: 3 Max. Marks: 100(IA:30, 1	
3L+(OT+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Fundamental concepts of design of RC members, assumptions.	
	Types and function of reinforcement. Introduction to various related	
	IS codes, Characteristic load and characteristic strength.	5
	Working Stress Method: Working stress design philosophy.	3
	Analysis and Design of singly reinforced rectangular beam section for	
	flexure.	
3	Limit State Design: Limit state design philosophy. Assumptions,	
	Analysis and design of singly reinforced, doubly reinforced	
	rectangular beams and flanged beams for flexure using codal	10
	provisions for simply supported, cantilever, fixed and continuous	
	beams.	
4	Limit state of serviceability for deflection: control of deflection as	
	per codal provisions of empirical coefficients.	
	Limit state of collapse in shear: Types of shear reinforcement and	
	its detailing, analysis and design of shear reinforcement for prismatic	6
	sections.	Ŭ
	Limit state of collapse in bond: concept of bond stress, anchorage	
	length and development length. Detailing and curtailment of	
	reinforcement as per codal provisions.	
5	Slabs: Analysis and design of one way and two way slabs using LSM,	6
	Detailing of reinforcement. Check for shear and deflection.	
6	Columns: Short and long columns, their structural behaviour.	
	Analysis and design of axially loaded short columns, using LSM.	
	Analysis of eccentrically loaded short columns. Introduction to Pu-	5
	Mu interaction curves and their use for eccentrically loaded columns.	
	Footings: Analysis and design of Isolated column footing for axial	4
	load. Introduction to combined footing for two columns (without	
	central beam) for axial loads using LSM.	
7	Torsion: Analysis and Design of beams for torsion as per codal	3
	method.	
	TOTAL	40
	Rejection Technical University	Hairs

PRESCRIBED BOOKS

1. Reinforced Concrete: Limit state design by A.K. Jain, Nemchand and Brothers.

2. Limit state design by Dayaratnam, Oxford and IBH Publishing House

3. Limit State Design of Reinforced Concrete by Verghese P.C., PHI Delhi

4. Reinforced Cement Concrete Design by Neelam Sharma, S.K. Kataria & Sons

WEEKLY TIME TABLE OF THE TEACHER

Day	1	2	3	4	5	6	7
Monday				DCS (RY)			
Tuesday				DCS (RY)			
Wednesday				DCS (RY)			
Thursday				DCS (RY)			
Friday			DCS (RY)				
Saturday							

COURSE-PLAN

Lastura			Teaching Mathada/
Lecture	UNIT.	TOPICS	Methods/
INO.			Aide
			Alus
1	1	INTRODUCTION: Objective, scope and outcome of	White
-	-	the course	Board
		FUNDAMENTAL CONCEPTS OF DESIGN OF RC	White
2	2	MEMBERS,	Board
-		Types and function of reinforcement. Introduction to	White
3	2	various related IS codes,	Board
			White
4	2	Characteristic load and characteristic strength	Board
_	2	Working Stress Method: Working stress design	
5	2	philosophy	
C	C	Design of singly reinforced rectangular beam section	White
D	Z	for flexure	Board
		LIMIT STATE DESIGN: LIMIT STATE	White
7	3	Students will able to identify design philosophy and	Board
		Assumptions	Dourd
8	3	Students will able to design of singly reinforced	White
		5 5,	Board
9	3	Students will able to design of singly reinforced	White
			Board
10	3	Students will able to design of singly reinforced	White
			Board
		Students will able to Doubly reinforced rectangular	
11	3	beams and flanged beams for flexure using codal	White
		provisions for simply supported	Board
		Students will able to design of doubly reinforced	W/h:4a
12	3	rectangular beams and flanged beams for flexure	Board
		using codal provisions for simply supported.	Doard
		Students will able to design of doubly reinforced	
13	3	rectangular beams and flanged beams for flexure	White
		using codal provisions for simply supported	Board
		Students will able to design of cantilever, fixed and	White
14	3	continuous beams	Board
		Students will able to design of cantilever, fixed and	White
15	3	continuous beams	Board
4.6		Students will able to design of cantilever, fixed and	White
16	3	continuous beams	Board
		LIMIT STATE OF SERVICEABILITY FOR DEFLECTION:	
17	4	Students will able to compute control of deflection as	White
		per codal provisions of empirical coefficients	Board

	Students will able to understand Limit state of	
	serviceability for deflection: and compute control	White
4	of deflection as per codal provisions of empirical	Board
	coefficients	
	Students will able to understand Limit state of	
4	collapse in shear and write the	White
	types of shear reinforcement and its detailing	Board
4	Students will able to design of shear reinforcement	White
	Students will able to understand Limit state of	Doald
4	collapse in bond, concept of bond stress, anchorage	White
	and development length	Board
	Students will able to draw Detailing and identify	White
4	curtailment of reinforcement	Board
	SLABS: ANALYSIS AND DESIGN OF ONE WAY	White
5	USING LSM	Board
		White
5	Students will able to design of one way using LSM	Board
_		White
5	Students will able to design two-way slabs using LSM	Board
E	Students will able to two way slabs using LSM	White
5		Board
5	Students will able to draw detailing of reinforcement	White
5		Board
5	Students will able to compute for shear and	White
	deflection	Board
	COLUMNS:	White
6	Students will able to understand short and long	Board
	Columns, their structural behaviour	
6	Students will able to design of axially loaded short	White
	columns using LSIVI	Board
6	Students will able to understand design of axially loaded short columns using	White
0	LSM	Board
	Students will able to analyze of eccentrically loaded	White
6	short columns	Board
	Students will able to understand concept of Pu-Mu	
6	interaction curves and their use for eccentrically	White
C C	, loaded columns	Board
	Students will able to design of Isolated column	White
6	footing for axial load	Board
	Students will able to design of Isolated column	White
6	footing for axial load	Board
	Students will able to identify combined footing	
6	for two columns (without central beam) for axial	White
0	loads using LSM	Board
	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6	Students will able to understand Limit state of serviceability for deflection: and compute control of deflection as per codal provisions of empirical coefficients 4 Students will able to understand Limit state of collapse in shear and write the types of shear reinforcement and its detailing 4 Students will able to design of shear reinforcement for prismatic sections 4 Students will able to understand Limit state of collapse in bond, concept of bond stress, anchorage and development length 4 Students will able to draw Detailing and identify curtailment of reinforcement as per codal provisions 5 Students will able to design of one way using LSM 5 Students will able to design of one way using LSM 5 Students will able to draw detailing of reinforcement active will able to draw detailing of reinforcement 5 Students will able to draw detailing of reinforcement 5 Students will able to understand short and long columns, their structural behaviour 6 Students will able to understand design of axially loaded short columns using LSM 6 Students will able to understand design of axially loaded short columns 6 Students will able to understand concept of Pu-Mu interaction curves and their use for eccentrically loaded columns 6 Students will able to design of Isolated column footing for axial load

37	6	Students will able to identify combined footing for two columns (without central beam) for axial loads using LSM	White Board
38	387TORSION:387Students will able to understand the torsional behaviour of beams in frame structures.		White Board
39 7		Students will able to Design of beams for torsion as per codal method	White Board
40	7	Students will able to Design of beams for torsion as per codal method	White Board

Signature of Faculty:

Signature of HOD

Assignment – 1 B. TECH 3rd – YEAR (V SEM.) Subject: - Design of Concrete Structures

- i) List the key assumptions made in the design of RC members using the Limit State Design (LSM) method. How do these assumptions differ from those used in the Working Stress Method (WSM)?
- ii) What are the types and functions of different types of reinforcement used in RC structures? Provide examples.
- iii) Explain the significance of characteristic load and characteristic strength in the design of RC structures as per IS codes. Why are these parameters critical in design?
- iv) Describe the differences between singly reinforced and doubly reinforced beams. Under what conditions is it necessary to use doubly reinforced beams?
- Using the Working Stress Method (WSM), design a singly reinforced v) rectangular beam section subjected to a given moment. Assume the required dimensions and loading conditions.
- vi) Design a one-way slab using the Limit State Design (LSM) method, considering a simply supported span. Include details of the reinforcement as per IS code provisions.
- vii) Analyze a cantilever beam with a rectangular section for shear forces. Determine the required shear reinforcement using LSM for a given loading condition.
- viii) Compare the structural behavior of short and long columns. What factors influence the choice of design approach for these columns?
- ix) Evaluate the adequacy of the provided reinforcement details for a two-way slab, considering factors such as deflection, shear, and anchorage length.
- Critically analyze the impact of torsion on beam design. Design a beam for x) a given torsional moment and justify the choice of torsional reinforcement according to codal provisions.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Assignment – 2

B. TECH 3rd – YEAR (V SEM.)

Subject: - Design of Concrete Structures

- i) A rectangular RC beam section has a width of 300 mm and an effective depth of 500 mm. It is reinforced with steel of characteristic strength fy=415 MPaf_y = 415 \, \text{MPa}fy=415MPa. Calculate the moment of resistance for a singly reinforced beam if the area of steel AsA_sAs is 1500 mm21500 \, \text{mm}^21500mm2. Use the Limit State Design method and assume fck=25 MPaf_{ck} = 25 \, \text{MPa}fck = 25MPa.
- ii) Design a simply supported one-way slab spanning 4 m, subjected to a live load of 3 kN/m23 \, \text{kN/m}^23kN/m2 and a floor finish load of 1 kN/m21 \, \text{kN/m}^21kN/m2. Use M20 grade concrete and Fe415 steel. Calculate the required thickness and reinforcement for the slab using the LSM method.
- iii) A short RC column with a square cross-section of 400 mm x 400 mm is subjected to an axial load of 1000 kN. Design the column using M25 grade concrete and Fe415 steel. Determine the required area of longitudinal reinforcement.
- iv) A cantilever beam of span 2.5 m is subjected to a uniformly distributed load of 10 kN/m10 \, \text{kN/m}10kN/m along its length. Design the shear reinforcement using LSM, considering a beam cross-section of 300 mm x 450 mm, M25 grade concrete, and Fe415 steel. Determine the required spacing of stirrups.
- v) A T-beam has a flange width of 1200 mm, a flange thickness of 100 mm, and a web width of 300 mm. The effective depth is 600 mm. Determine the ultimate moment of resistance for the T-beam if it is reinforced with 2500 mm22500 \, \text{mm}^22500mm2 of tensile reinforcement using M30 grade concrete and Fe415 steel

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

SAMPLE QUIZ QUESTIONS

1. Which of the following is NOT an assumption made in the analysis of RC beams using the Limit State Design method?

A) Plane sections remain plane before and after bending.

B) Tensile strength of concrete is considered in flexural design.

C) The strain in steel and concrete is proportional to their distance from the neutral axis.

D) Maximum strain in concrete at the extreme fiber in bending is 0.0035.

Answer: B) Tensile strength of concrete is considered in flexural design.

2. What is the primary purpose of stirrups in reinforced concrete beams?

- A) To resist bending moments
- B) To prevent thermal expansion
- C) To resist shear forces
- D) To increase the ductility of concrete
- Answer: C) To resist shear forces

3. In a simply supported one-way slab, which direction is the main reinforcement provided?

- A) Along the shorter span
- B) Along the longer span
- C) Along both spans equally
- D) Diagonally
- Answer: B) Along the longer span

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

4. According to IS 456, the minimum cover to the reinforcement for a beam exposed to

moderate environmental conditions is:

A) 15 mm

B) 20 mm

C) 25 mm

D) 30 mm

Answer: B) 20 mm

5. For a short column subjected to axial compression, the failure is governed by:

A) Buckling of the column

B) Shear failure

- C) Crushing of concrete
- D) Yielding of steel

Answer: C) Crushing of concrete

6. What is the development length for a steel bar in tension, according to IS 456:2000, if the characteristic strength of concrete is $\langle (f_{ck} = 20 \rangle, \text{text}\{MPa\} \rangle$ and the yield strength of steel is $\langle (f_y = 415 \rangle, \text{text}\{MPa\} \rangle$?

A) 47 \(\phi \)

B) 57 \(\phi \)

C) 64 \(\phi \)

D) 70 \(\phi \)

Answer: B) 57 \(\phi \)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

7. Which of the following types of beams is most suitable for a situation where high

torsional resistance is required?

- A) Singly reinforced rectangular beam
- B) Doubly reinforced beam
- C) Flanged beam (T-beam or L-beam)
- D) Box beam
- Answer: D) Box beam
- 8. The characteristic strength of M25 grade concrete is:
- A) 25 MPa at 7 days
- B) 25 MPa at 28 days
- C) 25 N/mm\(^2\) at 7 days
- D) 25 N/cm\(^2\) at 28 days
- Answer: B) 25 MPa at 28 days
- 9. For a beam to be classified as doubly reinforced, it must have:
- A) Reinforcement only in the tension zone
- B) Reinforcement only in the compression zone
- C) Reinforcement in both tension and compression zones
- D) Shear reinforcement in the form of stirrups

Answer: C) Reinforcement in both tension and compression zones

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

- 10. Which of the following methods is primarily used to control deflection in RC beams?
- A) Increasing the grade of steel
- B) Increasing the depth of the beam
- C) Providing additional stirrups
- D) Using high strength concrete
- Answer: B) Increasing the depth of the beam

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Mid Term 1

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR

B. TECH 3rd - YEAR (V SEM.) - MT-I

Design of Concrete Structures (5CE4-03)

Time: 2 Hr Max.

Marks: 70

Note

- 1) The paper is divided into 2 parts: Part-A and, Part-B
- 2) Part-A contains 10 questions and carries 2 mark each.
- 3) Part-B contains 5 questions. Each question is having two options and carries 10 marks each.
- 4) IS 456:2000 is allowed.

Part- A (20 Marks)

Under Reinforced and over reinforced section as per Limit State Method.	CO1
Why the doubly reinforced beams are preferred than singly reinforced beams?	CO1
Characteristic Strength of concrete and partial safety factor as per IS 456:2000.	CO1
Why do the IS code suggest to provide minimum reinforcement in beam if it is	CO1
not	
required theoretically?	
Give the stress block parameters used in LMS along with the stress diagram.	CO2
Define Diagonal tension.	CO2
Define bond stress.	CO2
What is necessity of providing shear reinforcement?	CO2
Difference between one way and two-way slab.	CO3
What do mean by the deflection control for slab.	CO3
	Under Reinforced and over reinforced section as per Limit State Method. Why the doubly reinforced beams are preferred than singly reinforced beams? Characteristic Strength of concrete and partial safety factor as per IS 456:2000. Why do the IS code suggest to provide minimum reinforcement in beam if it is not required theoretically? Give the stress block parameters used in LMS along with the stress diagram. Define Diagonal tension. Define bond stress. What is necessity of providing shear reinforcement? Difference between one way and two-way slab. What do mean by the deflection control for slab.

1	An Isolated simply supported T-beam has a flange width (b) = 2400mm, Flange	CO1
	thickness (D_f) =120 mm, Effective span (L) =3.6 m. The effective depth of beam	
	(d)	
	= 580 mm and its width (b_w) =300 mm. It is reinforced with 8 bars of 20 mm	
	diameter. Determine the moment of resistance of the section. Use M20 & Fe 415.	
2	Draw the stress block parameters for a typical T-Beam section having $X_u < D_f$,	CO1
	$X_u > D_f$	
	and $X_{umax} > X_u > D_f$, Also give the formula to determine ultimate moment of	
	resistance for each condition.	
3	With the help of neat sketch, Explain the followings,	CO2
	b) Two Legged Vertical Stirrups	
	c) Inclined Shear Stirrups	
4	Explain the Limit state of serviceability for deflection and Bond	CO2
5	Design a simply supported slab for a room 3.5mx7.5m clear in size. The slab is	CO3
	carrying an imposed load of 5 kN/m2. Use M20 concrete and Fe 415 Steel	

Part- B (50 Marks)

Marks and Gap Analysis of Mid-Term I

S.No.	University Roll No.	Name of Student	Mid-Term 1 MM-70	Remark (Remedial Class need or not – Y/N)
1.	21ETCCE001	Dev vaishnav	45	
2.	21ETCCE002	Hitesh Sutradhar	45	
3.	21ETCCE004	Naved khan	47	
4.	21ETCCE006	Pushpendra gehlot	52	
5.	21ETCCE007	Shalin Dak	45	
6.	21ETCCE009	Tamanna kumawat	65	
7.	21ETCCE300	Muniraj Sharma	61	
8.	22ETCCE200	Moiz Udaipurwala	54	
9.	22ETCCE201	Vikas Suthar	63	

(Y, if obtained marks are <50%)

Signature of Faculty:

Signature of HOD

Remedial Action Taken to Remove the Gaps (After Mid-Term 1)

S.no.	University Roll no.	Name of Student	Topics to be discussed in Remedial Class	Schedule Date of Remedial Class	Outcome Achieved
1.	NIL				
2.					

Signature of Faculty:

Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Mid Term Paper-II

TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR

B. TECH 3rd - YEAR (V SEM.) - MT-II

Design of Concrete Structures (5CE4-03)

Time: 2 Hr

Max. Marks: 70

Note:

1) The paper is divided into 2 parts: Part-A and, Part-B

2) Part-A contains 10 questions and carries 2 mark each.

3) Part-B contains 5 questions. Each question is having two options and carries 10 marks each.

Part- A (20 Marks)

А.	What is one way slab? Explain the deflection control for slab.	CO3
В.	Explain the difference between one way and two-way slab.	CO3
C.	What is the classification of columns?	CO4
D.	Define the effective length of column. Explain the slenderness ratio.	CO4
E.	What is the minimum eccentricity? Give its limiting value for a axially	CO4
	loaded column in LMS.	
F.	Write a brief note on Interaction curves.	CO4
G.	Write the purposes to provide RC footings.	CO5
Н.	Where do we use combined footings, why?	CO5
١.	What do you understand by term "equivalent shear force" and "equivalent	CO5
	bending moment"?	
J.	Write steps for designing aa beam subjected to tortional moment.	CO5

Part- B (50 Marks)

1. Design a simply supported slab for a room 3.5mx7.5m clear in size. The slab	CO3
is carrying an imposed load of 5 kN/m2. Use M20 concrete and Fe	
415 Steel	
OR	
1. Explain the Restrained slabs and Unrestrained slab, and write its	CO3
importance.	
2. Find the ultimate load carrying capacity and allowable load for a short column	CO4
of size 500mm x 500mm. The column is reinforced with 4-25 mm	
diameter bars. Use M20 concrete and Fe 415 Steel. Assume emin < 0.05 D.	
OR	•
2 Explain the Limit state of collapse: Compression and provisions of	CO4
longitudinal reinforcement in column as per IS 450:2000.	

3.	Design a circular column of diameter 400mm subjected to a load of 1200 kN.	CO4
	The column is having spiral ties. The column is 3.5 m long and effectively	
held in position at both ends but not restrained against rotation.		
	Use M20 concrete and Fe 415 Steel.	
	OR	
3	Describe various steps in design of an axially loaded column as per IS	CO4
	code.	

4	Design a square footing of a uniform thickness for an axially loaded	CO5		
column of 450x450 mm size. The safe bearing capacity of soil is 190 kN/m2.				
	Load on column is 850 KN. Use M20 and Fe 415 steel.			
	OR			
4	Describe various steps in design of a square footing with uniform depth	CO5		

5	Design the torsional reinforcement in a beam of size 400x750mm	CO5
	subjected to a ultimate bending moment, Shear force and twisting moment	
	as 200 kNm, 120 KN and 150 kNm respectively. Use M20 concrete and	
	Fe415 steel	

	OR	
5	Determine the reinforcement required for a beam of size 300x600mm	CO5
	subjected to a factored bending moment, Shear force and torsional moment	
	as 150 kNm, 100 KN and 50 kNm respectively. Use M20 concrete and	
	Fe415 steel	

Marks and Gap Analysis of Mid-Term II

S.No.	University Roll No.	Name of Student	Mid-Term 1 MM-70	Remark (Remedial Class need or not – Y/N)
1.	21ETCCE001	Dev vaishnav	44	Ν
2.	21ETCCE002	Hitesh Sutradhar	44	Ν
3.	21ETCCE004	Naved khan	46	Ν
4.	21ETCCE006	Pushpendra gehlot	51	Ν
5.	21ETCCE007	Shalin Dak	44	Ν
6.	21ETCCE009	Tamanna kumawat	64	N
7.	21ETCCE300	Muniraj Sharma	60	N
8.	22ETCCE200	Moiz Udaipurwala	53	N
9.	22ETCCE201	Vikas Suthar	62	N

(Y, if obtained marks are <50%)

Signature of Faculty:

Signature of HOD

Remedial Action Taken to Remove the Gaps (After Mid- Term **1I**)

S.no.	University	Name of	Topics to be	Schedule	Outcome
	Roll no.	Student	discussed in	Date of	Achieved
			Remedial	Remedial	
			Class	Class	
1.					
	NIL				
2.					

Signature of Faculty:

Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Model Question Paper

5E1343/2019

[Contd....

(1)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Instructions to Candidates:

Attempt all ten questions from Part A, selecting five questions out of Seven from Part B and Four questions out of Five from Part C. (Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly). Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination. (mentioned in form no.205)

IS 456:2000 1

PART - A

(Answer should be given up to 25 words only) All questions are compulsory

- Write any two difference between limit state and working state methods. 1.
- What do you understand by torsion of the beam? 2.
- What do you understand by singly reinforced beam? 3.
- Write the concept of bond stress. 4.
- What is anchorage length and development length? 5.
- Explain difference between design load and working load. 6.
- Write any two difference between short column and long column. 7.
- Define one way and two way slab. 8.
- Define factor of safety. 9.
- Write any two difference between combined and isolated footing.

PART - B

(Analytical/Problem solving questions)

(5×8=40)

 $(10 \times 2 = 20)$

Attempt any five questions A rectangular singly R.C beam with cross - section 320 mm×550 mm is simply supported over the alexandrection of 250 mm each. Calculate 1. supported over the clear span of 4.50 m with support of 250 mm each. Calculate ultimate moment of resistance of the beam using limit state method. Use M20 Fe 415 steel grade,

(1)

5E1343/2019

[Contd....

STUDENT PERFORMANCE REPORT

Roll No.	Roll No. Name of Student		II Mid-Term	Average
21ETCCE001	Dev vaishnav	45	44	44.5
21ETCCE002	Hitesh Sutradhar	45	44	44.5
21ETCCE004 Naved khan		47	46	46.5
21ETCCE006	Pushpendra gehlot	52	51	51.5
21ETCCE007	ГССЕ007 Shalin Dak		44	44.5
21ETCCE009	21ETCCE009 Tamanna kumawat		64	64.5
21ETCCE300 Muniraj Sharma		61	60	60.5
22ETCCE200 Moiz Udaipurwala		54	53	53.5
22ETCCE201 Vikas Suthar		63	62	62.5

Signature of Faculty:

Signature of HOD

RESULT ANALYSIS

S.NO	RTU ROLL NUMBER	NAME OF STUDENT	END TERM MARK S	SESSIONAL MARKS	TOTA L
		MAX MARKS	70	30	100
1.	21ETCCE001	Dev vaishnav	33	20	53
2.	21ETCCE002	Hitesh Sutradhar	24	20	44
3.	21ETCCE004	Naved khan	17	21	38
4.	21ETCCE006	Pushpendra gehlot	AB	23	AB
5.	21ETCCE007	Shalin Dak	28	20	48
6.	21ETCCE009	Tamanna kumawat	29	29	58
7.	21ETCCE300	Muniraj Sharma	38	27	65
8.	22ETCCE200	Moiz Udaipurwala	38	24	62
9.	22ETCCE201	Vikas Suthar	28	28	56

TOTAL	PASS	FAIL	ABSENT	PASS %
9	9	1	1	88.89%

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Indirect Assessment:

Overall Teacher Self-Assessment (at the completion of course) in terms of course objective and outcomes

Course Objectives:

The course aims to equip students with fundamental knowledge and skills in the design of reinforced concrete (RC) structures, adhering to relevant Indian Standards (IS) codes. Students will learn various design methodologies, including the Working Stress Method and Limit State Design (LSM), to analyze and design beams, slabs, columns, and footings. Emphasis is placed on understanding structural behavior, reinforcement detailing, serviceability limits, and the concepts of shear, torsion, bond stress, and deflection control, preparing students to tackle practical challenges in RC design and construction.

Course Outcomes:

At the end of this course students will be able to:

CO1: Recall fundamental concepts, design principles, and relevant IS codes associated with reinforced concrete (RC) structures..

CO2: Understand the role of different types of reinforcement, design assumptions, and the principles of Working Stress Method and Limit State Design (LSM).

CO3: Apply LSM principles to design RC beams, slabs, and columns for various structural conditions.

CO4: Apply LSM principles to design RC beams, slabs, and columns for various structural conditions..

CO5: Evaluate the structural performance of RC members, ensuring safety, stability, and adherence to design standards..

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Methodology to identify bright student

It is done by considering a range of criteria, including academic performance, creativity, critical thinking, problem-solving skills, and enthusiasm for learning. Bright students often excel in multiple areas. Observed how students perform in the classroom. In terms of active participation, engagement in discussions, leadership, and the ability to grasp complex concepts.

Efforts to keep students engaged

- Active Learning: Incorporate active learning strategies, such as group discussions, problem-solving activities, and hands-on projects. Active participation keeps students engaged and encourages critical thinking.
- 2. Varied Teaching Methods: Use a variety of teaching methods, including lectures, group work, multimedia presentations, and interactive activities to cater to different learning preferences.
- 3. **Technology Integration**: Leverage technology, such as online platforms, educational apps, and interactive software, to make lessons more engaging and interactive.

Methodology to identify weak student

It is done by considering a range of criteria, including classroom observation, formative assessment, summative assessment, assignment review etc. Weak students are struggling students with sensitivity and a desire to support their learning. Some measures, such as additional tutoring, personalized assignments, or alternative assessment methods, to help students succeed.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

Targeted inventions for weak student

1. Additional Resources

Offer supplementary learning materials, such as textbooks, online resources, or multimedia content, to provide alternative explanations and reinforce key concepts.

2. Remedial classes

Establish a tutoring program where students can receive extra help from teachers.

3. Flipped classroom

Students are assigned pre-class learning materials, often in the form of videos, readings, or online modules, to cover the foundational concepts before coming to class.