Techno India NJR Institute of Technology

Course File Machine Learning (6CS4- 02)

Dr. Pankaj Kumar Porwal (Professor & Principal) **Department of CSE**

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-02:Machine Learning

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120)

3L+0T+0P End Term Exam:							
SN	Contents						
1	Introduction: Objective, scope and outcome of the course.	01					
2	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithm	09					
3	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	08					
4	Introduction to Statistical Learning Theory, Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	08					
5	Semi supervised learning, Reinforcement learning: Markov decision process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State- Action-Reward-State-Action (SARSA), Model-based Reinforcement Learning.	08					
6	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Backpropagation, Introduction to Deep learning.	08					
	Total	42					

Course Overview

Machine Learning is the sub-field of Artificial Intelligence. It helps to build automated systems that can learn by themselves using data and experience. This helps the machines make data-directed choices. This is an introductory course in Machine Learning covering all popular machine learning algorithms in supervised learning, unsupervised learning, reinforcement learning, recommendation systems. This course also covers basics of statistical learning theory for feature extraction and feature selection. Last unit introduces the concepts of ANN with glimpses of Deep Learning.

This course will be very helpful for students who are planning for a career in the field of Data Science and Machine Learning. There is a huge demand for these skills in established companies as well as startups.

Course Outcomes

CO. NO.	Cognitive Level	Course Outcome
1	TT. 1	Gain knowledge about basic concepts of various Machine
	Understand	Learning algorithms
2	Analyse	Identify machine learning techniques suitable for a given problem
3	Application	Apply various data pre-processing and dimensionality reduction
	reprication	techniques to prepare data for modelling purpose
4	Application	Solve the problems using various machine learning techniques
~	Create	Be able to design and implement various machine learning
5		algorithms in a range of real-world applications.

Course Outcome Mapping with Program Outcomes

Machine Learning Year of study: 2020-21															
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO36402.1	1	1	0	1	0	1	0	0	0	0	0	1	3	3	2
CO36402.2	1	2	1	1	1	1	0	0	0	0	0	1	3	3	2
CO36402.3	1	1	2	2	1	1	0	0	0	0	0	2	3	3	2
CO36402.4	1	1	1	2	1	1	0	0	0	0	0	3	3	3	2
CO36402.5	1	1	1	1	1	1	0	0	0	0	0	2	3	3	2
C36402 (AVG)	1.00	1.20	1.00	1.40	0.80	1.00	0.00	0.00	0.00	0.00	0.00	1.80	3.00	3.00	2.00

Lecture Plan

Total No. of Lectures Planned: 42

Lecture Unit		Tonic					
No.	Mapping	Төрк					
1	1	Introduction: Objective, scope and outcome of the course.					
2	2	Supervised learning algorithm: Introduction, types of learning, application					
3	2	Supervised learning algorithm: Introduction, types of learning, application					
4	2	Linear Regression Model,					
5	2	Naïve Bayes classifier					
6	2	Decision Tree					
7	2	Random forest algorithm					
8	2	K nearest neighbour					
9	2	Logistic Regression					
10	2	Support Vector Machine					
11	3	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering					
12	3	Hierarchical Clustering, Probabilistic clustering					
13	3	Association rule mining					
14	3	Apriori Algorithm					
15	3	Apriori Algorithm					
16	3	f-p growth algorithm					
17	3	f-p growth algorithm					
18	3	Gaussian mixture model.					
19	4	Introduction to Statistical Learning Theory					
20	4	Feature extraction - Principal component analysis, Singular value decomposition.					
21	4	Feature extraction - Principal component analysis, Singular value decomposition.					
22	4	Feature selection – feature ranking and subset selection					
23	4	Filter, wrapper and embedded methods					
24	4	Filter, wrapper and embedded methods					
25	4	Evaluating Machine Learning algorithms and Model Selection					

26	4	Evaluating Machine Learning algorithms and Model Selection
27	5	Semi supervised learning, Reinforcement learning: Markov decision process (MDP)
28	5	Semi supervised learning, Reinforcement learning: Markov decision process (MDP)
29	5	Bellman equations
30	5	Policy evaluation using Monte Carlo
31	5	Policy iteration and Value iteration
32	5	Q-Learning, State-Action-Reward-State-Action (SARSA)
33	5	Q-Learning, State-Action-Reward-State-Action (SARSA)
34	5	Model-based Reinforcement Learning
35	6	Recommended system
36	6	Collaborative filtering
37	6	Content-based filtering
38	6	Artificial neural network, Perceptron,
39	6	Multilayer network, Backpropagation
40	6	Multilayer network, Backpropagation
41	6	Introduction to Deep learning
42	6	Introduction to Deep learning

Books / Online Resources

A Course in Machine Learning by Hal Daumé III Introduction to Probability and Statistics for Engineers and Scientists by Sheldon M. Ross Machine Learning, on edX by Prof. John W. Paisley, Department of Electrical Engineering, Columbia University <u>https://www.edx.org/course/machine-learning</u> NPTEL Course: Introduction to Machine Learning <u>https://nptel.ac.in/courses/106/105/106105152/</u>

Assessment Methodology

- 1. Hands on exercises on various machine learning techniques and algorithms
- 3. Mid Term Subjective Paper
- 3. Final University Exam

Teaching and Learning Resources

Unit 1

Video Lectures:

Introductory Concepts

https://www.youtube.com/watch?v=IjNwvrDC8fU&list=PLloZa6L2Dthh1B1m1xYLL_4IVcK_iaI2T

Unit 2

Supervised Learning Algorithms

YouTube Playlist

https://www.youtube.com/playlist?list=PLloZa6L2DthhoXRyHSXWS8WnH9iFIFPcc

Lecture Notes

https://drive.google.com/file/d/1beLEsPTP-XMOh9Ejt8OvFuYGZ3qATyD4/view?usp=sharing https://drive.google.com/file/d/11L6m4e-UchuFHpvaVjf9Tc_zIVauAzGZ/view?usp=sharing https://drive.google.com/file/d/1nK1VV4IbFF1fIP9zMh_PosUtP3mNuDeR/view?usp=sharing

Unit 3

Unsupervised Learning Algorithms

YouTube Playlist

https://www.youtube.com/playlist?list=PLloZa6L2DthjYtrJRuHTqI6V5XEUeioKV

Lecture Notes

https://drive.google.com/file/d/1Y_F3pR4CzThHb0SXuGvmnutffBBJaKeK/view?usp=sharing https://drive.google.com/file/d/1hdArGnS5BwZDuGJKw5Krm1_kmYbXuEGn/view?usp=sharing Unit 4

Statistical Learning Theory

Lecture notes

https://drive.google.com/file/d/12i_eqTWvWt0uISh2r6JnFCrnkgcNaH9I/view?usp=sharing

Unit 5

Reinforcement Learning

YouTube Playlist

https://www.youtube.com/watch?v=-Afn1PBwMGc&list=PLloZa6L2Dthi-baGngFkImaq3jJEPQm6l

Lecture Notes

https://drive.google.com/file/d/19JOcQnIG5vmT5wgotNE5XxB-89o_H9Cg/view?usp=sharing

Unit 6

Recommendation Systems, Artificial Neural Networks, Deep Learning

YouTube PlayIsts

https://www.youtube.com/watch?v=YrL0WXAKT4w&list=PLloZa6L2Dthitwv73K8_S6agTi5DSEBJ0 https://www.youtube.com/playlist?list=PLloZa6L2Dthhnk2xlgCPrxzXjIbsvyZ-r

Lecture Notes

https://drive.google.com/file/d/1Gm6ZxFUfcu9mz1zWSF5_S0595-wQeMkv/view?usp=sharing https://drive.google.com/file/d/1e_7Kpi4yLIh9fdOXOxvBpk2Tf-jxBy-C/view?usp=sharing

Lecture Notes (PPT Slides)