

1

Industrial Training Report

Place of training: Cranes Varsity, Bengaluru, Karnataka

Period of training: 25th July to 20th January 2024

Submitted to

Department of Electrical Engineering

Summer Training In-charge at TINJRIT: Mr. Rajkumar Soni

By

Praveen Meghwal : 20ETCEE005

(Batch 2020-2024)

Branch: Electrical Engineering

 Techno India NJR Institute of Technology

 Plot-T, Bhamashah (RIICO) Industrial Area,

 Kaladwas, Udaipur-313001, Rajasthan

2

 Contents

S.NO. TOPIC PAGE NO.

1 Certificate 3

2 Acknowledgment 5

3 INTRODUCTION OF

the institution

5

4 General information

About Embdd & IOT

6

5 Overview of the

Embedded and IOT

Modules

9

5.1 Python Programming

9

5.2 C Programming 13

5.3 C++ Programming 18

5.4 Basic electronics 20

5.4.1
Analog electronics

21

5.4.2 Digital Electronics 23

6 Arm Microcontroller 25

6.1 LPC 2129
Microcontroller

27

7 Keil IDE 30

1. Certificate

3

4

This is to certify that Praveen Meghwal, Bachelor of Electrical Engineering has

completed Industrial Training in Embedded and IOT module from CRANES

VARSITY as partial fulfillment of Bachelor of Engineering EE. The Industrial

Training Report, Presentation, and Project are genuine work done by him and

the same is being submitted for evaluation.

Signature

Mr. Rajkumar Soni

HOD EE

5

2. ACKNOWLEDGMENT’s

I take this opportunity to express my profound gratitude and deep regards to my

guide Mr. Rajkumar Sharma (Head of EE) for his exemplary guidance,

monitoring, and constant encouragement throughout the training. The blessing,

help, and guidance given by him occasionally shall carry me a long way in the

journey of life on which we are about to embark.

I especially take the opportunity to thank our coordinator, Mr. Yogendra Singh

Solanki, for his valuable information and guidance which helped me in completing

this task through various stages. I also take this opportunity to express a deep

gratitude to all my teachers of the Electrical Engineering Department for their

coordinated support.

I am obliged to the staff members of the CRANES VARSITY for their

valuable information provided by them in their respective fields. I am grateful for

the cooperation provided by them during my training period.

I am thankful to the almighty and our parents for their moral support and to my

friends with whom I shared my day-to-day experience and received lots of

suggestions that improved my quality of work.

3. INTRODUCTION TO THE INSTITUTION: Cranes Varsity, a division of

Cranes Software International Ltd, has been a pioneering force in empowering

professionals through the seamless integration of technology and education since

its inception in 1998. Positioned as a leading EdTech platform, we specialize in

delivering impactful, hands-on training to a diverse audience, including graduates,

universities, working professionals, and corporate and defense sectors. Our

overarching goal is to bridge the gap between technology, academia, and industry.

6

With over 25 years of dedicated service, Cranes Varsity has transitioned from a

trailblazing Technical Training institute to a dynamic EdTech Platform, offering

state-of-the-art technology education services. We take pride in fostering trusted

partnerships with more than 5000 esteemed academia, corporate, and defense

organizations. This collaborative approach has enabled Cranes Varsity to

successfully train over 1 Lakh engineers and facilitate the placement of 70,000+

professionals.

At the heart of our success lies the guiding principle, "We Assist Until We Place,"

which has served as the cornerstone of our growth and unwavering commitment to

excellence over the past two decades. This ethos drives our continuous efforts to

provide unparalleled support to our learners and uphold our position as a leader in

the ever-evolving landscape of technology education.

4. General information about Embedded and IoT

Embedded systems and the Internet of Things (IoT) are closely related concepts in

the field of technology, each playing a significant role in shaping the modern

digital landscape. Here's a general overview of both:

 Embedded Systems:

1. Definition:

 - An embedded system is a dedicated computing device designed to perform

specific functions or tasks within a larger system.

2. Characteristics:

 - Real-Time Operation: Many embedded systems are designed to respond to

stimuli in real-time.

7

 - Single-Purpose: Typically, they are tailored for specific applications and

functions.

 - Low Power Consumption: Often, embedded systems are constrained by power

requirements.

 - Reliability: They need to be highly reliable, as they perform critical tasks.

3. Applications:

 - Found in a wide range of devices: consumer electronics, automotive systems,

medical equipment, industrial machines, etc.

 - Examples include microcontrollers in washing machines, automotive engine

control units, and industrial automation systems.

4. Development Tools:

 - Specific to the microcontroller or processor used.

 - Common programming languages include C and assembly.

 Internet of Things (IoT):

1. Definition:

 - The IoT refers to the network of interconnected devices embedded with sensors,

software, and network connectivity, allowing them to collect and exchange data.

2. Characteristics:

 - Connectivity: Devices in the IoT are interconnected, enabling communication

and data sharing.

 - Data Collection: Sensors gather data from the environment or the device itself.

8

 - Remote Monitoring and Control: Allows users to monitor and control devices

remotely.

 - Scalability: Can range from small-scale deployments to large-scale, global

networks.

3. Applications:

 - Smart homes, healthcare, agriculture, industrial automation, smart cities, etc.

 - Examples include smart thermostats, wearable fitness trackers, and industrial

sensors.

4. Technologies:

 - Communication Protocols: MQTT, CoAP, HTTP, etc.

 - Wireless Technologies: Wi-Fi, Bluetooth, Zigbee, LoRa, etc.

 Intersection of Embedded Systems and IoT:

1. Embedded Systems in IoT:

 - Embedded systems form the core of many IoT devices, providing the necessary

computing power and control.

 - They manage sensors, actuators, and communication modules in IoT devices.

2. Challenges:

 - Security: Both embedded systems and IoT face challenges related to securing

devices and data.

 - Interoperability: Ensuring seamless communication among devices from

different manufacturers.

9

3. Development Tools:

 - Tools used for embedded systems development are also essential for IoT device

development.

In summary, embedded systems are the building blocks, providing the necessary

computing capabilities, while IoT extends the capabilities by connecting these

embedded systems into a network for data exchange and remote control. The

synergy between embedded systems and IoT continues to drive innovation across

various industries.

5. Overview of the Embedded and IOT Modules

5.1 Python Programming: Python programming is a versatile and widely

used programming language known for its readability and simplicity.

It is used in various domains, including web development, data

science, artificial intelligence, machine learning, automation, and

more. Learning Python can be a rewarding experience, and the time

it takes to complete depends on various factors, such as your prior

programming experience, the depth of knowledge you want to

acquire, and the learning resources you use.

Fig.1 Python

10

Here is a general overview of Python programming and factors that may

influence the time it takes to learn:

Python Basics:

1. Syntax and Basics:

 - Variables, Data Types, and Operators

 - Control Flow (if statements, loops)

 - Functions and Modules

2. Data Structures:

 - Lists, Tuples, Sets, Dictionaries

3. Object-Oriented Programming (OOP):

 - Classes and Objects

 - Inheritance, Encapsulation, Polymorphism

Intermediate Python:

1. File Handling:

 - Reading and Writing Files

2. Error Handling:

 - Exception Handling

11

3. Advanced Data Structures:

 - Advanced usage of Lists, Sets, Dictionaries

4. Functional Programming:

 - Lambda Functions, Map, Filter, Reduce

Advanced Python:

1. Modules and Libraries:

 - Popular libraries (e.g., NumPy, Pandas, Matplotlib)

 - Understanding third-party modules

2. Web Development (Optional):

 - Flask or Django for web development

3. Database Integration (Optional):

 - Connecting to and manipulating databases

4. Concurrency and Asynchronous Programming (Optional):

 - Asyncio for asynchronous programming

12

5. Testing and Debugging:

 - Writing unit tests

 - Debugging techniques

 Time Estimates:

- Beginner with no programming experience: Several weeks to a few months.

- Intermediate knowledge in another programming language: A few weeks to a

couple of months.

- Experienced programmer transitioning to Python: A few weeks.

Factors Affecting Learning Time:

1. Consistency: Regular, dedicated practice is key.

2. Learning Resources: The quality of tutorials, courses, and books can

significantly impact learning speed.

3. Projects: Applying your knowledge through small projects can reinforce

learning.

4. Prior Experience: Your background in programming can affect how quickly you

grasp concepts.

5. Practice and Application: Hands-on coding and real-world projects enhance

understanding.

13

5.2 C Programming Language: General Information

C is a general-purpose, procedural programming language created by Dennis

Ritchie in the early 1970s at Bell Labs. It has become one of the most widely

used programming languages due to its efficiency, versatility, and close-to-

hardware functionality. Here is some general information about the C

programming language:

Fig 2. C Language

 Key Features:

1. Procedural Language:

 - C follows a procedural programming paradigm, emphasizing functions and

structured programming.

2. Low-Level Access:

 - C provides low-level access to memory, making it suitable for system

programming and developing applications where performance is critical.

14

3. Portability:

 - C programs are highly portable and can be executed on different platforms

with minimal modification.

4. Efficiency:

 - C allows for direct manipulation of hardware, making it efficient for tasks that

require low-level memory access.

5. Structured Language:

 - C supports structured programming with features like functions, loops, and

conditionals.

6. Extensibility:

 - C can be easily extended through the use of libraries, and it serves as the

foundation for many other programming languages.

7. Rich Standard Library:

 - C comes with a standard library that provides functions for common

operations, enhancing code reusability.

Basic Syntax and Structure:

15

- Hello World Program:

  ```c 

  #include <stdio.h> 

 

  int main() { 

      printf("Hello, World!\n"); 

      return 0; 

  } 

  ``` 


- Key Concepts:

 - Variables and Data Types

 - Functions and Control Flow (if statements, loops)

 - Arrays and Pointers

 - Structures and Unions

 - File Handling (I/O operations)

Memory Management:

- Pointers:

16

 - C supports pointers, allowing direct manipulation of memory addresses.

- Dynamic Memory Allocation:

 - Functions like `malloc()` and `free()` enable dynamic memory allocation.

Standard Libraries:

- stdio.h:

 - Input/output functions like `printf` and `scanf`.

- stdlib.h:

 - Functions for memory allocation (`malloc`, `free`) and other utility functions.

- string.h:

 - String manipulation functions.

- math.h:

 - Mathematical functions.

Applications:

17

1. System Software:

 - Operating systems, device drivers, and embedded systems.

2. Application Software:

 - Text editors, compilers, databases, and graphics software.

3. Game Development:

 - Many game engines and graphics libraries are written in C.

4. Network Programming:

 - C is widely used for network programming due to its low-level capabilities.

5. IoT (Internet of Things):

 - C is used in embedded systems and IoT devices.

Development Environments:

- IDEs:

 - Common Integrated Development Environments include Code::Blocks, Dev-

C++, and Eclipse with CDT.

18

- Compilers:

 - Popular compilers include GCC (GNU Compiler Collection), Microsoft Visual

C++, and Clang.

Learning Resources:

- Books:

 - "The C Programming Language" by Brian Kernighan and Dennis Ritchie (K&R)

is a classic.

 - "C Programming Absolute Beginner's Guide" by Perry and Miller.

- Online Courses:

 - Platforms like Coursera, edX, and Udemy offer C programming courses.

C remains a foundational language in computer science and is still widely used

in various domains. Learning C provides a solid understanding of programming

fundamentals and is an excellent starting point for those exploring software

development.

5.3 C++ or CPP language: C++ is a powerful and versatile programming

language developed by Bjarne Stroustrup at Bell Labs in the early

1980s. It is an extension of the C programming language,

incorporating both procedural and object-oriented programming

paradigms. Known for its efficiency, performance, and flexibility, C++

19

is widely used in various domains, including system programming,

game development, embedded systems, and application software.

Fig 3. C++ language

One of the distinctive features of C++ is its strong support for object-oriented

programming (OOP). It provides features such as classes, objects, inheritance,

polymorphism, and encapsulation, allowing developers to create modular

and reusable code. C++ also supports procedural programming, making it

suitable for a wide range of applications.

The language includes the Standard Template Library (STL), a powerful set of

generic algorithms and data structures. The STL simplifies complex

programming tasks with pre-built components like vectors, queues, and

sorting algorithms. This contributes to code reusability and enhances

productivity.

Memory management in C++ is explicit, allowing developers to allocate and

deallocate memory manually using operators like `new` and `delete`. While

this provides fine-grained control, it also necessitates careful management to

avoid memory leaks and errors.

C++ is a multi-paradigm language, accommodating procedural, object-

oriented, and generic programming styles. This flexibility enables

developers to choose the most appropriate paradigm for a given task,

enhancing code organization and maintainability.

Portability is another key aspect of C++.

20

 Programs written in C++ can be compiled and executed on different

platforms with minimal adjustments, contributing to its widespread use

and longevity.

The language prioritizes performance, making it suitable for applications

demanding computational efficiency, such as game development and

system-level programming.

Development environments for C++ include popular Integrated

Development Environments (IDEs) like Visual Studio, Code::Blocks, and

Eclipse. Additionally, several compilers, including GCC, Microsoft Visual

C++, and Clang, support C++.

Learning resources for C++ range from authoritative books like

"Programming: Principles and Practice Using C++" by Bjarne Stroustrup to

online courses on platforms like Coursera and Udemy. Aspiring programmers

can benefit from the language's rich ecosystem and community support.

In summary, C++ stands as a robust and enduring programming language with

a diverse range of applications. Its combination of procedural and object-

oriented features, along with support for generic programming and efficient

memory management, makes it a preferred choice for developers tackling

diverse challenges in the software development landscape.

5.4 Basic Electronics: Basic Electronics: Understanding Analog and Digital

electronics.

Basic electronics is the foundation of modern technology, encompassing the

study of electrical components, circuits, and systems. It can be broadly

categorized into two main domains: analog and digital electronics.

Understanding these concepts is crucial for anyone delving into the field of

21

electronics.

Fig 4. Analog v/s Digital electronics

5.4.1 Analog Electronics:

1. Definition:

 Analog electronics deals with continuous signals, where information is

represented by varying voltage or current levels. It involves the study of

analog circuits that process and manipulate continuous signals.

2. Basic Components:

 - Resistor: Restricts the flow of electric current.

 - Capacitor: Stores and releases electrical energy.

 - Inductor: Stores energy in a magnetic field.

22

 - Diode: Allows current to flow in one direction.

 - Transistor: Amplifies or switches electronic signals.

3. Operational Amplifiers (Op-Amps):

 - Op-Amps are fundamental components in analog electronics used for

amplification, signal conditioning, and mathematical operations.

4. Analog Signals:

 - Analog signals represent information using continuously varying voltage

or current levels.

 - Examples include audio signals, temperature readings, and analog sensors.

5. Analog Circuits:

 - Amplifiers: Increase the strength of signals.

 - Filters: Allow certain frequencies to pass while blocking others.

 - Oscillators: Generate periodic waveforms.

6. Applications:

 - Audio systems, analog sensors, analog communication systems, and

analog signal processing.

23

5.4.2 Digital Electronics:

1. Definition:

 Digital electronics deals with discrete signals represented by binary digits

(bits), using combinations of 0s and 1s. It involves the study of digital circuits

that process and manipulate digital signals.

2. Basic Components:

 - Logic Gates: Fundamental building blocks for digital circuits (AND, OR, NOT,

XOR).

 - Flip-Flops: Store binary information.

 - Registers: Group of flip-flops used for data storage.

 - Microcontrollers/Microprocessors: Process digital information.

3. Digital Signals:

 - Digital signals represent information using discrete levels of voltage or

current, typically denoted as 0 and 1.

 - They offer advantages in terms of noise immunity and ease of processing.

4. Digital Circuits:

 - Adders and Subtractors: Perform arithmetic operations.

 - Multiplexers and Demultiplexers: Select and route digital data.

24

 - Counters and Shift Registers: Sequential logic circuits.

5. Binary System:

 - Information in digital electronics is represented using the binary system,

where each digit is a binary number (0 or 1).

6. Applications:

 - Computers, digital cameras, digital audio players, microcontrollers, and

digital communication systems.

 Comparison:

1. Signal Representation:

 - Analog: Continuous signals with varying voltage or current levels.

 - Digital: Discrete signals with binary representation (0s and 1s).

2. Noise Immunity:

 - Analog: Prone to noise and interference.

 - Digital: More immune to noise; signals can be accurately reconstructed.

3. Processing and Storage:

25

 - Analog: Continuous processing and storage.

 - Digital: Discrete processing and storage.

4. Accuracy:

 - Analog: Limited by components and noise.

 - Digital: High accuracy due to discrete levels.

5. Applications:

 - Analog: Audio systems, sensors, and communication.

 - Digital: Computing, data storage, and signal processing.

Understanding both analog and digital electronics is essential as modern

electronic systems often involve a combination of these technologies. Signal

processing may start with analog sensors, which are then digitized for further

processing in a digital system. This synergy between analog and digital

concepts forms the backbone of modern electronic devices and systems.

Students and enthusiasts in electronics often begin by learning the principles

of basic components, circuits, and systems, gradually progressing to more

complex applications in both analog and digital domains.

6. ARM Microcontroller: ARM microcontrollers are a family of

microprocessors based on the ARM architecture, designed for embedded

systems and applications requiring low power consumption. ARM, which

stands for Advanced RISC Machine, is a Reduced Instruction Set Computing

(RISC) architecture known for its efficiency and versatility.

26

ARM microcontrollers find widespread use in various industries, including

automotive, consumer electronics, industrial automation, and Internet of

Things (IoT) devices. One of the key advantages of ARM architecture is its

scalability, allowing manufacturers to produce microcontrollers with varying

performance levels to meet diverse application requirements.

These microcontrollers typically feature a 32-bit or 64-bit architecture,

providing a balance between performance and power efficiency. The ARM

Cortex-M series is particularly popular for microcontroller applications due to

its emphasis on low power consumption and cost-effectiveness.

ARM microcontrollers offer a range of peripherals and features, including

GPIO (General Purpose Input/Output) pins, timers, communication interfaces

(such as UART, SPI, I2C), and analog-to-digital converters. This rich set of

peripherals makes ARM microcontrollers suitable for a wide range of tasks,

from simple control applications to more complex systems.

Programmers often use the C programming language to develop software for

ARM microcontrollers. The ARM Cortex Microcontroller Software Interface

Standard (CMSIS) provides a standardized framework for software

development, ensuring portability across different ARM-based

microcontroller platforms.

ARM microcontrollers are known for their energy efficiency, making them

well-suited for battery-powered devices and applications where power

consumption is a critical factor. The architecture's popularity has led to a vast

27

ecosystem of development tools, compilers, and libraries, further facilitating

the creation of software for these microcontrollers.

In summary, ARM microcontrollers are a versatile and widely adopted choice

for embedded systems, offering a balance between performance, power

efficiency, and scalability. Their prevalence across various industries attests to

their adaptability for diverse applications in the rapidly evolving field of

embedded computing.

6.1 LPC 2129 Microcontroller:The LPC2129 microcontroller is part of the

LPC2100 series developed by NXP Semiconductors, formerly Philips

Semiconductors. This series is based on the ARM7TDMI-S architecture,

a 32-bit Reduced Instruction Set Computing (RISC) architecture,

renowned for its efficiency in embedded systems. The LPC2129 is

specifically designed for applications requiring advanced control and

connectivity features.

28

 Fig.5 LPC 2129 Board

The LPC2129 features a 16/32-bit ARM7TDMI-S core running at a clock

frequency of up to 60 MHz. It integrates on-chip Flash memory for program

storage, ranging from 128 KB to 512 KB, and has SRAM ranging from 16 KB to

64 KB for data storage. This on-chip memory configuration reduces the need

for external memory components, making it suitable for cost-effective

designs.

Connectivity is a key strength of the LPC2129, with built-in peripherals

including UARTs (Universal Asynchronous Receiver-Transmitters), SPI (Serial

Peripheral Interface), I2C (Inter-Integrated Circuit), and CAN (Controller Area

Network) interfaces. These features make it suitable for applications in

communication, automotive, and industrial control systems.

29

The LPC2129 also includes a variety of timers/counters, GPIO (General

Purpose Input/Output) pins, and analog-to-digital converters, enhancing its

versatility for diverse embedded applications. Additionally, it supports real-

time clock (RTC) functionality, enabling accurate timekeeping in applications

requiring timestamping or scheduling.

Program development for the LPC2129 is typically done in C or assembly

language using tools like Keil MDK (Microcontroller Development Kit) or other

ARM development environments. The presence of a JTAG (Joint Test Action

Group) interface facilitates debugging and programming of the

microcontroller.

Overall, the LPC2129 microcontroller combines the efficiency of the

ARM7TDMI-S architecture with advanced connectivity features, making it

well-suited for applications where a balance of performance, connectivity,

and cost-effectiveness is crucial. Its widespread use is evident in fields such

as industrial automation, automotive control systems, and various embedded

applications requiring robust processing capabilities.

30

7. Keil IDE:

Keil IDE (Integrated Development Environment) is a widely-used software

development tool for embedded systems. Developed by Arm, it provides a

comprehensive environment for writing, compiling, and debugging code for

microcontrollers. Keil supports various microcontroller architectures,

including ARM, 8051, and C166. With features like project management, code

editing, and debugging tools, Keil simplifies the development process for

embedded systems, making it a preferred choice among engineers and

developers working on diverse microcontroller projects.

