1.2.3 Average percentage of students enrolled in Add-on/Certificate programs as against the total number of students during the last five years (10) REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: MECHANICAL DEPARTMENT (2015-16) 1.2.3 Average percentage of students enrolled in Add-on/Certificate programs as against the total number of students during the last five years (10) REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: MECHANICAL DEPARTMENT (2016-17) | | | : | | | : | | |--------------------------------------|-------------|--------------|--------------|----------|----------|--| | | | 20 | | Z | Z | | | | Add on | 유 | | 큠 | 큥 | | | Name of Add on /Certificate programs | Training/ | ₹ | on or | er | œ | | | offered | Certificate | es | course | of | of. | Course Outcome | | | | | | | | Covered the classifications, characteristics, and functions of industrial robots | | | | | | • | | as well as basic safety precautions for working with robots. • Covered the | | | | | 2 | | | fundamental concepts required for programming of industrial robots • | | | | | Weeks | 1 | 1 | Described the various types of end effectors and their uses. It also explains | | NONA- pasic xopor Programming | external | - | 3 | Ú | Ú | the issue of compliance and describes how to maintain end effectors. • | | | | | Hrs) | | | Described the most common robot axes. Explained how to understand these | | | | | | | | axes, and how they are used to control robot movement. • Introduced to the | | | | | | | | troubleshooting process and gone through to identify problems and their | | | | | 2 | | | Manufacturing excellence through relevant automation • Controller | | Automation Technologies- Basic Level | External | - | Weeks | <u>-</u> | 11 | programming and use of actuators in automation and selection criteris | | | C30017101 | • | (4o | ; | ļ | Industrial control system, PLC Programming, use of function blocks, Multi | | | | | Hrs) | | | tasking • Human-mechanic-interface design | | | | | 4 | | | Described the working of various blocks of basic industrial automation system | | Automation Technologies- | External | _ | Weeks | 1 | <u>-</u> | Connects the peripherals with the PLC • Use various PLC functions and | | Intermediate Level | , | • | (80 | 1 | | develop small application programs using sensors and actuators. • Summarize | | | | | Hrs) | | | Electro Hydraulic and Electro Pneumatic systems • Use various industrial | | | : | | | | | sensors for the Industrial Automation | | | | | 2 | | | Manufacturing excellence through relevant automation • Controller | | Automation Technologies: Basic Level | Fxternal | <u>.</u> | Weeks | <u>1</u> | 16 | programming and use of actuators in automation and selection criteris | | 0 | | , | (40 | į | ì | Industrial control system, PLC Programming, use of function blocks, Multiple | | | | | Hrs) | | | tasking • Human-mechanic-interface design | | | | | | | | A CLUM | asign 1.2.3 Average percentage of students enrolled in Add-on/Certificate programs as against the total number of students during the last five years (10) | | 苕 | |---|--| | : | 9 | | | 2 | | | 8 | | | 2 | | • | 5 | | | 臣 | | | CERTIF | | : | Ö | | | 描 | | , | Ŗ | | 1 | õ | | | 꾿 | | | Ź | | | 0 | | | 물 | | | 罗 | | ' | Ξ | | ! | ź | | | 2 | | - | ₹ | | | Ē | | | 2 | | | 쿬 | | | S | | | INT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ME | | | 끞 | | I | Ž | | I | ፳ | | I | CAL DEP | | | Ť | | | R | | | ₹ | | | S | | | 2 | | J | 2 | | Control & Automation
(AGIIT) | Robotics & Industrial
Automation(KUKA-
CIT) | Basic Automation Training(PLC & SCADA) | Name of Add on
/Certificate programs
offered | |---|--|--|--| | External | External | External | Add on
Training
/ | | 1 | 1-7 | 1 | No. of
times
offered | | 30
days | 2
Weeks | 30
days | Durati
on of
course | | 22 | 22 | 16 | No. of Durati Numbe Numb times on of r of er of offered course student Stude | | 22 | 22 | 16 | Numb
er of
Stude | | Covered the most common applications of industrial robots. • The importance of maintenance, as well as the various approaches and methods used by maintenance workers today to keep industrial robots performing optimally. | Covered the classifications, characteristics, and functions of industrial robots as well as basic safety precautions for working with robots. • Covered the fundamental concepts required for programming of industrial robots • Described the various types of end effectors and their uses. It also explains the issue of compliance and describes how to maintain end effectors. • Described the most common robot axes. Explained how to understand these axes, and how they are used to control robot movement. • | Programmable Logic Controller (PLC)• Supervisory Control & Data Acquisition •Variable Frequency Drive (VFD) • Human Machine Interface (HMI) • Industrial Control Panel (Designing & Maintenance) | Course Outcome | mally. | Industrial Training
Program(AKGEC) | Vehicle Design &
Development
(Specialized) | Advanced Diploma in
Industrial Robotics
(AGIIT) | |---|--|--| | External | External | External | | 1 | ₽ | Ь7 | | 6
Weeks | 15
Days | 30
days | | ω | 25 | 22 | | ω | 25 | 22 | | Manufacturing excellence through relevant automation • Controller programming and use of actuators in automation and selection criteris •industrial control system, PLC Programming, use of function blocks, Multi tasking • Humanmechanic-interface design | Rollcage/Chassis Design-CAD & PVC model Generation • Suspension & Steering design & Analysis •Braking and subassembly, Engine and transmission, electrical system, | Covered different methods of protecting workers from industrial robot accidents. • Covered the functions and characteristics of the different components of an industrial robot. • Covered the function of structured programming, their methodology & conceptualization. • Covered the fundamental concepts of Variables, subprograms, function, Data list & Data manipulation in the | . | | æ | |---|---------------| | ı | ₹EP | | ı | ŏ | | ı | ᆽ | | ı | 7 | | ı | O | | ı | Z | | ı | > | | ı | <u> </u> | | ı | D | | ı | Q | | ı | Z | | ı | - | | ı | Ω | | ı | 異 | | ı | 1 | | ı | Ŧ | | ı | Ö | | ı | > | | | ᅜ | | | | | | × | | ı | O | | | ଠ | | ı | 꼰 | | ı | 2 | | | S | | ŀ | S | | ŀ | O | | ١ | 7 | | 1 | П | | ı | Z | | ı | 크 | | ı | * | | 1 | 5 | | ı | 0 | | ı | ž | | ı | 킅 | | 1 | Z | | ı | П | | ı | \mathbf{C} | | | × | | | ¥ | | | S | | ŀ | ES | | | | | ļ | ≤ | | - | 四 | | ١ | Œ | | ١ | Þ | | ı | Z | | ı | ō | | ı | 2 | | ı | | | ı | ¥ | | ı | P | | ł | R | | Ì | | | | 3 | | ı | EN | | ı | ₹ | | ۱ | $\overline{}$ | | ı | 2 | | ۱ | 2018 | | ı | | | ı | H | | ı | ~ | | | | | Industrial Training Program(AKGEC) | Power Plant Engineering | Robotics & Industrial Automation (KUKA-CIT) | Name of Add on /Certificate programs offered ng/ d No. of Duratio ber er of Stude nts | |---|---
--|---| | Extern | Extern | Extern | Add on Traini | | ⊢ | 2 | j. | No. of times offere | | 6
Weeks | 30
Days | 2
Weeks | Duratio
n of
course | | 4 | (9+9) | 16 | Num Numb ber er of of Stude stude nts | | 4 | 18 | 16 | Numb
er of
Stude | | Industrial Hydraulics, Pneumatics. • PLCs • Interfacing of pneumatics with PLC • Introduction to SCADA system (win studio) • Hands on with Sensors, Hydraulic System, Pneumatic System, PLC, HMI, SCADA. Etc. | Understanding of Basic power plant engineering, Working of Rankine cycle in actual power plant. • Types of boiler, accessories and mounting • Coal & Ash handling power plant • Water treatment plant, water to steam path, Auxiliary cooling Water pump system • Mechanical interlock and protection of power plant • Boiler startup (permissive and protection) • Turbine startup (permissive and protection) • Process & instrumentation diagram, Heat mass balance diagram, Turbine Lube Oil System, Key performance & index • Safety and Environment | Covered the classifications, characteristics, and functions of industrial robots as well as basic safety precautions for working with robots. • Covered the fundamental concepts required for programming of industrial robots • Described the various types of end effectors and their uses. It also explains the issue of compliance and describes how to maintain end effectors. • Described the most common robot axes. Explained how to understand these axes, and how they are used to control robot movement. • Introduced to the troubleshooting process and gone through to identify problems and their causes. | Course Outcome | the day of the dealer | actual power plant. • Types of boiler, accessories and mounting • Coal & Ash handling power plant. • Types of boiler, accessories and mounting • Coal & Ash handling power plant. • Water treatment plant, water to steam path, Auxiliary cooling Water pump system • Mechanical interlock and protection of power plant. • Boiler startup (permissive and protection). • Turbine startup (permissive and protection). • Process & instrumentation diagram, Heat mass balance diagram, Turbine Lube Oil System, Key performance & index. • Safety and Environment. | ω | W | 30
Days | N | Extern
al | Thermax Limited | |--|---|---|------------|---|--------------|-----------------| | Indosetanding of Basic source plant operations in Marking of Banking such a | | | _ | | | | To the state of th | • | | | | |---|---|--|--| | | | | | | | | | | | | · | | | | | | | | | | | | | REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: MECHANICAL DEPARTMENT (2019-20) | 15 Drive (VFD) • Human Machine Interface (HMI) • Industrial Control Panel (Designing & Maintenance) | | | | | | | _ | |---|---------------|--------|------------------------|---------|-------------|---|---| | Programmable Logic Controller (PLC)• Supervisory Control & Data Acquisition •Variable Frequency | - · - · | 10+5 | 30 days | 2 | External | Basic Automation Training (PLC & SCADA) | | | in the year Course Outcome | | studer | offered course student | offered | Certificate | offered | | | leting the course | completing th | 잌 | times n of | | Training/ | Name of Add on /Certificate programs | | | No. of Duratio Number Number of Students | er Numbe | Numb | Duratio | | Add on | | | THE REPORT OF THE PARTY REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECTRICAL DEPARTMENT (2015-16) | Name of Add on Continues | | No. of times | Number | Number of | | |---|----------------------------------|----------------|-----------|---------------|--| | programs offered | External/In-House offered during | offered during | (students | Students | Course Outcome | | Programs of the | | the year | enrolled) | (completed) | | | Eduvance Training | External Training | 4 | ນ | 5.1 | Able to develope IoT based project. Able to | | 0 | Cycle of Francisco | · • | t | Đ | design Embedded systems | | Power Converter Design MATI In-house training | In-house training | • | A | 41 | •Able to develope power converter project. •Able | | G | 9 | , | ŧ | 1 | to Simulate power converter circuits. | | | | | | | Programmable Logic Controller (PLC) - Supervisory | | PLC/SCADA | In-house training | Ъ | 40 | \$ | Control & Data Acquisition • Industrial Control Panel | | | | | | | (Designing & Maintenance) | | | | | | | •Able to design Power System basic transmission | | Power System Design | In-house training | | 49 | 49 | line Simulations *Power System protection | | | | | | | simulations | | Panel Designing and wiring | In-house training | • | e
S | 96 | Able to develop basic electrical drawing •Able to | | G G | | • | | ç | design basic electrical panel wiring | TECHNO MON MIN MISTINGTE OF TECHNOLOGY # REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECTRICAL DEPARTMENT (2016-17) | Name of Add on /Certificate programs offered | External/ In-
House | No. of times Number offered during the (students year enrolled) | Number
(students
enrolled) | Number of Students (completed) | Course Outcome | |---|------------------------|---|----------------------------------|--------------------------------|---| | Cranes Software International Limited, Bangalore Training on Prog In External Training C & DS / Linux System Prg. | External Training | 1 | 2 | 2 | Able to develop codes for embedded systems Able to develop IDE for Embedded systems | | Cranes Software International Limited, Bangalore Training on Matlab External Training & Embedded | External Training | 1 | 2 | 2 | Able to design Embedded systems • Able to
basic codes for MATLAB | | RRVNL | External Training | | 49 | 10 | Able to understand all types of electrical grid Able to understand basic working of elertrical grid system and transmission parameter | | Power Converter Design, MATLAB | In-house training | 1 | 25 | 25 | Able to develope power converter project. Able to Simulate power converter circuits. | | PLC/SCADA | In-house training | 1 | 41 | 41 | Programmable Logic Controller (PLC) Supervisory Control & Data Acquisition Industrial Control Panel (Designing & Maintenance) | | Power System Design | In-house training | 1 | 40 | 40 | Able to design Power System basic
transmission line Simulations •Power System
protection simulations | | Control System Design | In-house training | ц | 49 | 49 | Able to develop basic electrical drawing •Able
to design basic electrical panel wiring | TEAMORITAN ST. CO. TEAMOR OF ## REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECTRICAL DEPARTMENT (2017-18) | | The Manager of the state | | | | | | |----
--|--------------------------|------------------------------------|----------------------|------------------------|---| | 67 | Able to develope power converter project. Able to Simulate power converter circuits. | 14 | 14 | 12 | In-house training | Power Converter Design, MATLAB | | | Able to describe the production of various
sensors and electrocnics circuits. Industrial
exposure from industrial experts | N | N | juk, | External Training | Tempsens Instruments India Private Limited | | | Able to describe the production of various
sensors and electrocnics circuits. Industrial
exposure from industrial experts | 23 | 2 | щ | External Training | Pyrotech Electronics Private Limited | | | Programmable Logic Controller (PLC) • Supervisory Control & Data Acquisition •Variable Frequency Drive (VFD) • Human Machine Interface (HMI) • Industrial Control Panel (Designing & Maintenance) | w | w | 1 | External Training | MERC: Basic Automation Training | | | Able to describe the power generation process
and Transmission systems Industrial exposure
from industrial experts | 3 | ω | Ţ. | External Training | Kalisindh Thermal Power Project | | | Able to design Embedded systems • Able to
basic codes for MATLAB | 1 | 1 | 1 | Cranes Varsity | Cranes Software International Limited, Bangalore
Training on Matlab & Embedded | | | Able to describe the power generation process
and Transmission systems Industrial exposure
from industrial experts | 2 | 2 | 1 | External Training | KTPS- Kota Super Thermal Power Station | | | Able to develope IoT based project. Able to design Embedded systems | ב | 1 | 1 | External Training | CSIR - Central Electronics Engineering Research
Institute | | | Provide understanding of operation of
industrial systems To provide opportunity for interaction with
industry experts for practical knowledge | 4 | 4 | ; <u> </u> | External Training | Bharat Sanchar Nigam Limited . | | | Course Outcome | Number
of
Students | Number Number (student of Students | No. of times offered | External/ In-
House | Name of Add on /Certificate programs offered | | | | | | | | г | |---|------------|----|---------|-------------------|---|---------------------------------------| | Able to develop basic electrical drawing *Able to design basic electrical panel wiring | 4 0 | 8 | | In-house training | Protection of Power System Simulation using PSCAD | | | Able to design Power System basic
transmission line Simulations •Power System
protection simulations | . 41 | 41 | 1 | In-house training | Power System Design | | | Programmable Logic Controller (PLC) Supervisory Control & Data Acquisition Industrial Control Panel (Designing & Maintenance) | 25 | 25 | 1 | In-house training | PLC/SCADA | · · · · · · · · · · · · · · · · · · · | anel wiring ## REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECTRICAL DEPARTMENT (2018-19) | Company of the second s | | | | | | |--|--------------------------------|----------------------------|----------------------|------------------------|---| | Able to develop basic electrical drawing • Able to design basic electrical panel wiring | 41 | 41 | 1 | In-house
training | Power System design PSCAD Simulation | | •Able to design Power System basic transmission line Simulations •Power System protection simulations | 25 | 25 | ₽ | In-house
training | Power System Design | | Programmable Logic Controller (PLC) Supervisory Control Data Acquisition Industrial Control Panel (Designing & Maintenance) | 14 | 14 | -4 | in-house
training | PLC/SCADA | | Able to develope power converter project. Able to Simulate power converter circuits. | 7 | 7 | 1 | In-house
training | Power Converter Design, MATLAB | | Understanding of Basic power plant engineering, Working of Rankine cycle in actual power plant . • Types of boiler, accessories and mounting • Coal & Ash handling power plant • Water treatment plant, water to steam path, Auxiliary cooling Water pump system • Electrical calculations of generations • Turbine startup (permissive and protection) • Process & instrumentation diagram, Heat mass balance diagram, Turbine Lube Oil System, Key performance & index • Safety and Environment | w | . 3 | 2 | External
⊤raining | Thermax Limited | | Able to develop codes for embedded systems Able to develop IDE for Embedded systems | 3 | 3 | μì | Cranes Varsity | Cranes Software International Limited, Bangalore Training on Prog In C & DS / Linux System Prg. | | Course Outcome | Number of Students (completed) | Number (students enrolled) | No. of times offered | External/ In-
House | Name of Add on /Certificate programs offered | REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECTRICAL DEPARTMENT (2019-20) | TEMPORAL ASSESSED ASSESSEDA ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA | | | | | |
--|-----------------------------------|----------------------------|--------------------|-------------------|--| | Able to develop codes for embedded systems • Able to develop IDE for Embedded systems | 4 | 4 | Ъ | External Training | GRRAS Solutions, Linux Training | | Able to develop codes for embedded
systems Able to develop IDE for
Embedded systems | 7 | 7 | 1 | External Training | GRRAS Solutions, Linux Training | | Programmable Logic Controller (PLC) Supervisory Control & Data Acquisition Variable Frequency Drive (VFD) Human Machine Interface (HMI) Industrial Control Panel (Designing & Maintenance). | 2 | 2 | 1 | External Training | MERC: Basic Automation Training | | Programmable Logic Controller (PLC) • Supervisory Control & Data Acquisition •Variable Frequency Drive (VFD) • Human Machine Interface (HMI) • Industrial Control Panel (Designing & Maintenance) | 7 | 7 | j⊷å | External Training | MERC: Basic Automation Training | | Course Outcome | Number of Students
(completed) | Number (students enrolled) | No.
of
times | External/in-House | Name of Add on /Certificate programs offered | | REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECT | / CERTIFICATE F | ROGRAMS OTH | ER THAN ONLINE C
(2016-17) | NE COURSES: EL
-17) | ECTRONICS AND COMMUNICATION DEPARTMENT | |--|-----------------|--------------|-------------------------------|------------------------|---| | Name of Add on | External/ In- | No. of times | Number | Number of | Course Outcome | | | | | | | CO1. Students will be able to use the ARM Cortex | | | | | | | Mo based microcontroller boards. | | | | | | | CO2. Students will be able to use various interface | | | | | | | such as SPI, UART. | | | | | | | CO3. Students will be able to interface various | | Eduvance Training | External | <u>د ر</u> | 16 | 16 | sensors to develop the IOT systems | | | | | | | CO1. Students will be able to use the ARM based | | | | | | | microcontroller boards. | | | | | | | CO2. Students will be able to use various interface | | Cranes Varsity | | | | | such as SPI, UART, I2C & CAN protocols | | Embedded System | | | | | CO3. Students will be able to interface various | | Training | External | <u> </u> | 14 | 14 | sensors to develop the embedded systems | | | | | (2017-18) | -18) | | |-----------------|---------------|--------------|-----------|-----------|---| | Name of Add on | External/ In- | No. of times | Number | Number of | Course Outcome | | Cranes Varsity | | | | | CO1. Students will be able to write C code for | | Emhedded System | External | - | 14 | <u>,</u> | embedded systems | | Training | CARCITAGE | ٠ | ; | | CO2. Students will be able to use MATLAB forGUI | | | • • • • | | | | application development. | | | | | | | CO1. Students will be able to use the ARM based | | | | | | | microcontroller boards. | | Cranes Varsity | | | | | | | Embedded System | External | H | 60 | ō, | CO2. Students will be able to use various interface | | Training | | | | | such as SPI, UART, I2C & CAN protocols | | | | | | | CO3. Students will be able to interface various | | | | | | | sensors to develop the embedded systems | | REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECT | / CERTIFICATE P | ROGRAMS OTH | ER THAN ONLINE C
(2018-19) | NE COURSES: EI
-19) | ECTRONICS AND COMMUNICATION DEPARTMENT | |--|-----------------|--------------|-------------------------------|------------------------|---| | Name of Add on | External/in- | No. of times | Number | Number of | Course Outcome | | | | | | | CO1. Students will be able to use the MSP430 | | | | | | | based microcontroller boards. | | | | | | | CO2. Students will be able to use various interface | | CEERI Pilani SDP on IoT | Externa | | ± 5 | × | such as SPI, UART. | | | | | (| , | CO3. Students will be able to interface various | | | | | | | sensors to develop the IOT systems | | | | | | | CO4. Studetns will be able to use various IoT light | | | | | | | weight OS and communication protocols. | | | | | | | Co1. Students will learn to use bussines | | Cambridge Bussiness | External | د | 16 | 1 | communication etiquettes. | | English | ! | · | ţ | į | CO2. Students will be able to present or express | | | | | | | themselves in corporate world. | | | | | | | CO1. Students will be able to use the FPGA | | industrial Iraining in | | | | | boards. | | VLSI Design and | External | - | . | ×o | CO2. Students will be able to use System verilog | | Verification by DKOP | | ı | ı | (| for VLSI cicuit design | | Labs Pvt. Ltd. | | | | | CO3. Students will be able to use System verilog | | | | : | | | for VLSI cicuit ASIC verification | ECHAO MUNICIPALITY OF TECHNOLOGY ξ **φ** -Α | REPORT ON ADD ON / CERTIFICATE PROGRAMS OTHER THAN ONLINE COURSES: ELECT | / CEKIIFICATE F | ROGRAMS OTH | ER THAN ONLINE (
(2019-20) | VE COURSES: EL | ECTRONICS AND COMMUNICATION DEPARTMENT | |--|------------------------|--|----------------------------------|--------------------------------------|--| | Name of Add on /Certificate programs offered | External/ In-
House | No. of times
offered during
the year | Number
(students
enrolled) | Number of
Students
(completed) | Course Outcome | | MERC PLC Scada training | External | L | 16 | 16 | CO1. Programmable Logic Controller (PLC). CO2. Supervisory Control & Data Acquisition CO3.Industrial | | | | | | | Control Panel (Designing & Maintenance) | | | | | | | CO1. Students Will be able to configure, install, upgrade | | GRRAS Solutions, LINUX | External | | 6+7+20 | ئ د | and maintain the Linux systems. | | Training | | , | | ł | CO2. Students will be able to manage system | | | | | | | monitoring for performance andf optimization. | | | | | | | CO1. student will be able to use C & C++ language to | | | | | | | develop software applications. | | CRANES Varsity IT | External | | 2 | <u>ي</u> | CO2. Studetns will be able to choose efficient data | | Readyness Module | | , | ţ | | structures to solve the problem. | | | | | | _ | CO3.Studetns will be able to optimize the code space | | | | | | | and time complexity. | The state of s ### Report on Add-on Trainings/Certificate Program 2015-16 | ω | 2 | 1 | Sr.No. | |---|---|---|--------------------------------| | Php | web programming | QA/VA Session | Training Name | | 48 | 50 | 86 | No of Students
Enrolled | | 48 | 50 | 86 | No of
Students
Completed | | CO 1: Students will be able to write PHP scripts to handle HTML forms. CO 2: Students will be able to write regular expressions including modifiers, operators, and metacharacters. CO 3:
Students will be able to create PHP programs that use various PHP library functions, and that manipulate files and directories. | CO 1: To learn HTML tags and JavaScript Language programming concepts and techniques. CO 2: To develop the ability to logically plan and develop web pages. CO 3: To learn to write, test, and debug web pages using HTML and JavaScript. | CO 1: To enhance the apptitude and problem solving skills of students CO 2: Students will be able to solve the logical, reasoning and apptitude in the competition exams. | Course Objective | (Carrar Krant) ECHNO MON NOR INSTITUTE OF TECHNOLOGY ### Report on Add-on Trainings/Certificate Program 2016-17 | Sr.No. | Training Name | No of Students | No of
Students | Course Objective | |--------|------------------------------------|----------------|-------------------|---| | | | Enrolled | Completed | | | | | | | CO 1: Students will be able to choose efficient data structures and apply them to solve problems. | | ۵. | | 3 | 20 | CO 2: Students will be able to analyze the efficiency of programs based on time complexity. | | 1- | C/ D3A | 39 | 33 | CO 3: Students will be able to prove the correctness of a program using loop invariants, pre-conditions and post- | | | | | | conditions in programs. | | | | | | CO 1: Students will be able to choose efficient data structures and apply them to solve problems. | | J | CIRCA | 70 | 20 | CO 2: Students will be able to analyze the efficiency of programs based on time complexity. | | ^ | C/ U3A | ţ | ť | CO 3: Students will be able to prove the correctness of a program using loop invariants, pre-conditions and post- | | | | | | conditions in programs. | | | | | | CO 1: Students will be able to choose efficient data structures and apply them to solve problems. | | U | Coca | 77 | 77 | CO 2: Students will be able to analyze the efficiency of programs based on time complexity. | | U | C/DSA | // | 17 | CO 3: Students will be able to prove the correctness of a program using loop invariants, pre-conditions and post- | | | | | | conditions in programs. | | | | | | CO 1: Write, Test and Debug Python Programs. | | 4 | Python | 50 | 50 | CO 2: Implement Conditionals and Loops for Python Programs. | | | | | | CO 3: Use functions and represent Compound data using Lists, Tuples and Dictionaries | | | | | | CO 1: Student will be able to use advanced technology in Java such as | | 5 | Adv Java | 40 | 40 | Internationalization, and Remote method Invocation | | | | | | CO 2: Student will learn how to work with JavaBeans. | | | | | | CO 1: To learn HTML tags and JavaScript Language programming concepts and techniques. | | 6 | web programming | 38 | 38 | CO 2: To develop the ability to logically plan and develop web pages. | | | | | | CO 3: To learn to write, test, and debug web pages using HTML and JavaScript. | | | | | | CO 1: student will be able to write simple GUI applications, use built-in widgets and components, work with the | | 7 | Android Programming | 40 | 40 | database to store data locally, and much more. | | , | 000 | d | d | CO 2: Understand the Android platform's organization, patterns and programming mechanisms and be able to use | | | | | | them effectively to develop their own Android applications. | | ю | OA WA Sossion | 75 | 75 | CO 1: To enhance the apptitude and problem solving skills of students | | 0 | QA/ VA Session | 70 | 10 | CO 2: Students will be able to solve the logical, reasoning and apptitude in the competition exams. | | | | | | CO 1: Students will be able to write PHP scripts to handle HTML forms. | | 9 | Pho | 55 | 55 | CO 2. Students will be able to write regular expressions including modifiers, operators, and metacharacters | | (| - | Ç | Ç | CO 3: Students will be able to create PHP programs that use various PHP library functions, and that manipulate | | | | | | files and directories (5) | | | | | 7 | CO 1: Ability to identify the characteristics of datasets and compare the trivial data and big data for various | | 10 | Data Analysis using B Brograms | 30 | | applications. | | 10 | Para Cital Asia range at 100 range | 36 | 1 | CO 2: Ability to select and implement machine learning techniques and computing environment that are suitable | | | | 10/3 | | for the applications under consideration. | from the applications under consideration. ### Report on Add-on Trainings/Certificate Program 2017-18 | Sr.No. | Training Name | No of Students | No of
Students | Course Objective | |--------|---|--|-------------------|--| | | | Enrolled | Completed | | | 1 | BA (2015-19 Batch) along with IBM group | 20 | 18 | CO 1: Understand the concept of apply the knowledge for analyzing the business data. CO 2: Students will be provided industry oriented course for better alignment with industry needs | | 2 | Data Science (Statistics) | 63 | 63 | CO 1: Ability to identify the characteristics of datasets and compare the trivial data and big data for various applications. CO 2: Ability to select and implement machine learning techniques and computing environment that are suitable for the applications under consideration. | | з | Python | 70 | 70 | CO 1: Write, Test and Debug Python Programs. CO 2: Implement Conditionals and Loops for Python Programs. CO 3: Use functions and represent Compound data using Lists, Tuples and Dictionaries | | 4 | Java & Adv Java | 45 | 45 | CO 1: Student will be able to use advanced technology in Java such as Internationalization, and Remote method Invocation CO 2: Student will learn how to work with JavaBeans. | | 5 | web programming | 40 | 40 | CO 1: To learn HTML tags and JavaScript Language programming concepts and techniques. CO 2: To develop the ability to logically plan and develop web pages. CO 3: To learn to write, test, and debug web pages using HTML and JavaScript. | | 6 | Android Programming | 62 | 62 | CO 1: student will be able to write simple GUI applications, use built-in widgets and components, work with the database to store data locally, and much more. CO 2: Understand the Android platform's organization, patterns and programming mechanisms and be able to use them effectively to develop their own Android applications. | | 7 | QA/VA Session | 77 | 77 | CO 1: To enhance the apptitude and problem solving skills of students
CO 2: Students will be able to solve the logical, reasoning and apptitude in the competition exams. | | ∞ | Php | 60 | 60 | CO 1: Students will be able to write PHP scripts to handle HTML forms. CO 2: Students will be able to write regular expressions including modifiers, operators, and metacharacters. CO 3: Students will be able to create PHP programs that use various PHP library functions, and that manipulate files and directories. | | 9 | Basic lot training on ARM mbed | 40 | ion. | CO 1: students will be able design some IOT based prototypes | | 10 | C/DSA | 200 S 200 S 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 50 | CO 1: Students will be able to choose efficient data structures and apply them to solve problems. CO 2: Students will be able to analyze the efficiency of programs based on time complexity. CO 3: Students will be able to prove the correctness of a program using loop invariants, pre-conditions and post-conditions in programs. | Cav. Dr. (Marinia Marinia ### Report on Add-on Trainings/Certificate Program 2018-19 | 11 | 10 | 9 | co | 7 | 6 | ر.
د | 4 | а | 2 | ъ | Sr.No. | |--|--|--|---|--|---|--|---
---|---|---|--------------------------------| | C/DSA | Oracle SQL | NVIDIA DLI Certification | Full stack | QA/VA Session | Adv Java | Android Programming | Php | IBM-BA (2015-19 Batch) | IBM-BA (2016-20 Batch) | SCOE Training | Training Name | | 245100 | 45 | 40 | 39 | 89 | 45 | 41 | 65 | 18 | 6 | 17 | No of Students
Enrolled | | 45. 45 | 45 | 40 | 39 | 89 | 45 | 41 | 65 | 18 | 6 | 15 | No of
Students
Completed | | CO 1: Students will be able to choose efficient data structures and apply them to solve problems. CO 2: Students will be able to analyze the efficiency of programs based on time complexity. CO 3: Students will be able to prove the correctness of a program using loop invariants, pre-conditions and post-conditions in programs. | CO 1: Understand basic concepts of how a database stores information via tables CO 2: Understanding of SQL syntax used with Oracle SQL | CO 1: Learn the fundamental techniques and tools required to train a deep learning model CO 2: Gain experience with common deep learning data types and model architectures CO 3: Enhance datasets through data augmentation to improve model accuracy | CO 1: Students will be able to develop a complete web application from the scratch that includes Front-end, Backend and Data-exchange technologies. CO 2: Build strong foundations (ex: OOPS) in entry level engineers thereby making them job ready as per industry requirements. | CO 1: To enhance the apptitude and problem solving skills of students CO 2: Students will be able to solve the logical, reasoning and apptitude in the competition exams. | CO 1: Student will be able to use advanced technology in Java such as Internationalization, and Remote method Invocation CO 2: Student will learn how to work with JavaBeans. | CO 1: student will be able to write simple GUI applications, use built-in widgets and components, work with the database to store data locally, and much more. CO 2: Understand the Android platform's organization, patterns and programming mechanisms and be able to use them effectively to develop their own Android applications. | CO 1: Students will be able to write PHP scripts to handle HTML forms. CO 2: Students will be able to write regular expressions including modifiers, operators, and metacharacters. CO 3: Students will be able to create PHP programs that use various PHP library functions, and that manipulate files and directories. | CO 1: Understand the concept of apply the knowledge for analyzing the business data. CO 2: Students will be provided industry oriented course for better alignment with industry needs | CO 1: Understand the concept of apply the knowledge for analyzing the business data. CO 2: Students will be provided industry oriented course for better alignment with industry needs | CO 1: Understand the concept of apply the knowledge for analyzing the business data. CO 2: Students will be provided industry oriented course for better alignment with industry needs | Course Objective | Car No. ### Report on Add-on Trainings/Certificate Program 2019-20 | | | 10 | | | ٥ | 0 | × | | 7 | | | | ٦ | | | 0 | п | | | | | | ىد
ىد | | | <u> </u> | | | 1 | 9 | Sr.No. | |---|--|------------|---|---|--|---|---|--|--|--|---------------|--|---|---|---|---|---------------|---|--|--|--|--|--|---|---|-----------------------|---|---|---|-----------------|------------------| | | - | | | 20 | u | - | 3 | _ | Z | | | | | - | | | | | | | | | | | | | | | | | 0 | | Sales force | | Adv. Java | | 2010 | No. | Media | lvsal | | NVIDIA DLI Certification | | | מון טנמכא | Full Stack | | | Data Science | at Colons | | | collac | Rod hat | on the feet of | IBM-RA (2016-20 Ratch) | | DA Hallillig (13t leal) | A Training (1st Vear) | | | DA & ML Training (2nd Year) | 6 | Training Name | | 30 | ACC. | 70 | | , | 70 | /0 | 70 | | 25 | | | 26 | u
C | | | 29 | G | | | 23 | 70 | (| 'n | | 22 | 33 | | | 53 | Enrolled | No of Students | | 30 | 0 | 70 | | /0 | 70 | ,0 | 70 | | 25 | | | 26 | ລ | | | 20 | C) | | | 23 | 20 | C | ת | | 26 | S
S | | | 53 | Completed | No of | | CO 1: Students will be able to create the application on salesforce CRM. CO 2: Students will be able to administration work on salesforce CRM. | CO 2: Student will learn how to work with JavaBeans. | Invocation | CO 1: Student will be able to use advanced technology in Java such as Internationalization, and Remote method | CO 2: Use the Java programming language for various programming technologies. | CO 1: knowledge of the structure and model of the Java programming language. | CO 2: Understanding of SQL syntax used with MySQL | CO 1: Understand basic concepts of how a database stores information via tables | CO 3: Enhance datasets through data augmentation to improve model accuracy | CO 2: Gain experience with common deep learning data types and model architectures | CO 1: Learn the fundamental techniques and tools required to train a deep learning model | requirements. | CO 2: Build strong foundations (ex: OOPS) in entry level engineers thereby making them job ready as per industry | Backend and Data-exchange technologies. | CO 1: Students will be able to develop a complete web application from the scratch that includes Front-end, | for the applications
under consideration. | CO 2: Ability to select and implement machine learning techniques and computing environment that are suitable | applications. | CO 1: Ability to identify the characteristics of datasets and compare the trivial data and big data for various | CO 2: Students will be able to managing systems for monitoring system performance and availability | standards and procedures Providing operational support | CO 1: Students will be able to Configuring, installing, upgrading, and maintaining Linux systems using established | CO 2: Students will be provided industry oriented course for better alignment with industry needs | CO 1: Understand the concept of apply the knowledge for analyzing the business data. | for the applications under consideration. | CO 2: Ability to select and implement machine learning techniques and computing environment that are suitable | applications. | CO 1: Ability to identify the characteristics of datasets and compare the trivial data and big data for various | CO 2: Students will be able to apply the machine learning concepts in real life problems. | CO 1: Understand machine learning concepts and range of problems that can be handled by machine learning. | contac orjentac | Course Objective | La de Tarante | Name of the Program | List of
Students
enrolled | Duration | Assessment
Procedures | Summary Report of each Program with their outcome | |---|---------------------------------|----------|--|---| | Staad Pro Training | Batch
2012-16 | 10 days | On the basis
of error free
files through
software | Students learned about commands and design concepts of staad pro and able to do run analysis and design result of RCC structures | | Winter Survey Camp
(Triangulation,
Contouring, Profile &
Cross-sectional
Leveling
Estimation & Valuation,
Total Station, Column
Layout, Plane Table
Survey) | Batch
2012-16 | 10 Days | Report
writing and
viva with
presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. Hands on practice on auto level, theodolite, total station. | | Site Visit at Chirva
Tunnel | Batch 2013-
17 (7th Sem) | 1 Day | Viva | Students Learned the structure of the tunnel and retaining structure around the tunnel | | Name of the Program | List of
Students
enrolled | Duration | Assessment
Procedures | Summary Report of each Program with their outcome | |---|--|----------|--|---| | Winter Survey Camp
(Triangulation,
Contouring, Profile &
Cross-sectional
Leveling
Estimation & Valuation,
Total Station, Column
Layout, Plane Table
Survey) | Batch 2014
(5th Sem) | 30 Days | Report
writing and
viva with
presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. Hands on practice on auto level, theodolite, total station. | | Site Visit at Mahi Dam: Importance of Reservoirs, Capacity, History, Control Unit, Functioning and operation under high rains etc. | Batch 2013-
17 (7th Sem) | 1 Day | Viva | Students Learned the working of Mahi
Dam and the characteristics of Dam like
catchment area, Volume of water flow
etc. | | MNIT Visit: Campus visit, Area of land, new block construction, Number of labs and instruments for NDT testing, etc. | Batch 2014-
18 (5th sem) | 1 days | Viva | Students Learned the structural & architectural concepts of MNIT Campus | | Mount Abu:
Educational tour,
History of the place,
etc. | Batch 2014-
18 (4th sem) | 03 Days | Viva | Students explored the city of Mount
Abu | | Auto Desk
Certification Training | Batch 2014-
2018
Batch 2015-
2019 | 5 Days | Certificate
provided by
Autodesk
after exam | Concepts of planning of building through auto cad, basic commands, learning of 2d and 3d views in autocad | | Name of the Program | Name of the
students
enrolled | Duration | Assessment
Procedures | Summary Report of each Program with their outcome | |---|-------------------------------------|----------|--|---| | Winter Survey Camp
(Concrete Mix,
Triangulation,
Contouring, Profile &
Cross-sectional
Leveling
Estimation &
Valuation, Total
Station, Column
Layout, Plane Table
Survey) | Batch 2015 (5th
Sem) | 30 Days | Report
writing and
viva with
presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. Hands on practice on auto level, theodolite, total station. | | Summer Survey Camp(Concrete Mix, 3DS Max, Estimation, Staaad Pro, Total Station, Profile levelling, Contouring, Estimation) | Batch 2016 (6th
Sem) | 30 Days | Report
writing and
viva with
presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. Hands on practice on auto level, theodolite, total station. | | Shiva Statue: About
the history,
Importance of
structure, Design
aspects for wind and
seismic conditions,
special materials,
form work etc. | Batch 2014-18
(5th sem) | 1 Day | Presentation | Students learned the structural design of Shiva statue and also various characteristics like foundation, height, material used etc. | | Site Visit at Mahi Dam: Importance of Reserviour, Capacity, History, Control Unit, Fuctioning and operation under high rains etc. | Batch 2014-18 (
4th sem) | 1 Day | Viva | Students Learned the working of Mahi Dam and the characteristics of Dam like catchment area, Volume of water flow etc. | | Site Visit at Mahi Dam: Importance of Reserviour, Capacity, History, Control Unit, Fuctioning and operation under high rains etc. | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students Learned the working of
Mahi Dam and the characteristics of
Dam like catchment area, Volume of
water flow etc. | | Site Visit at Mount zee Litera school building: Estimations , Column-footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students Learned the structural and
Architectural concepts of design of
Zee litera School Building | |---|---|---------|---|---| | Site Visit at IIIM Uaipur building: Estimations , Column- footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students Learned the structural and Architectural concepts of design IIM Udaipur campus. | | NATIONAL DESIGN AND RESEARCH FORUM (INSTITUTE OF CIVIL ENGINEER, BANGLORE): Paper submitted on Low-cost bricks using marble slurry, waste plastic and sand. | Lokesh Puri
Goswami,
Kundan Gorana | 1 Day | On the basis
of Paper
writing | Students Learned the effects caused by adding an external agent in concrete. | | STUPRENEURS
(JAIPUR): Project
pitched for student
entrepreneur
competition. | Lokesh Puri
Goswami,
Kundan Gorana,
Kamlesh kumar,
Sachin kumar.
Harshit Jharoli,
Mohit | 2 Month | On the basis
of project
performance | Students won first prize | | Bentley Institute
Student Design
Challenge 2018 :
Seismic analysis of
building, Staad Pro, | Kamlesh Panchal, Dheeraj Kumawat, Divya Patidar, Kirtika Kumawat, Jishan Khan, Kunal choubisa. Kamakshi Sharma. | 20 Days | On the basis
of project
performance | Students Designed a building according to the problem statement in Staad Pro software and learned designing and analysis of a high rise building. | | Bentley Institute Student Design Challenge 2018: Seismic analysis of building, Staad/Pro, | Batch 2016-20 (
4th Sem) | 20 Days | On the basis
of project
performance | Students Designed a building according to the problem statement in Staad Pro software and learned designing and analysis of a high rise building. | | Development of Rain Water Harvesting System through National Highway profiles by using GIS techniques and Field survey | Shiva Chouhan,
Mohit Jain,
Kamlesh
Panchal, Yash
Bhardwaj | 30 Days | On the
Paper
writing
Presentation | Students gather data regarding elevation points and planned an efficient rain water harvesting. |
--|--|---------|--|---| | Environment Friendly
Bricks and Blocks using
only Waste Materials | Lokesh Puri
Goswami,
Kunjpreet Kaur
Arora, Nikita
Sharma, Gaurav
Suthar, Sayed
Aamir, Kunjal
Jain | Yearly | On the basis
of
performance | Students made environment friendly bricks and blocks using waste material | TECHNO HOLA A.P. M. S. TIVIE OF TECHNOLOGY | Name of the Program | List of Students
enrolled | Duration | Assessment
Procedures | Summary Report of each
Program with their
outcome | |---|---|----------|--|---| | Requirements and
plannings of Badliya
village for converting it
into smart village
category in Banswada
Rajasthan | Om Prakash
Prajapat,
Bhuvnesh
Suthar,Suresh
Kumar,
Mahendra
Kumar | 20 Days | On the basis of
performance
during project
and paper
writing | Students surveyed the area and planned a smart village at Badliya by introducing solar lights, smart primary health center etc. | | Workshop on Crushed
EPS in Light weight
concrete | Nikita Sharma,
Gaurav Suthar,
Sayed Aamir
Hussain | 30 days | On the basis of performance and results | Students have made light
weight concrete successfully
and won first prize in
competition in IIT Mumbai | | Winter Survey Camp
(Total Station, Profile
levelling, Contouring,
Estimation, Market
Survey, Traffic
Studies) | Batch 2016
(5th Sem) | 30 Days | Report writing and viva with presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. | | Shiva Statue: About
the history, Importance
of structure, Design
aspects for wind and
seismic conditions,
special materials, form
work etc. | Batch 2015-19
(5th Sem) | 1 Day | Viva | Students learned the structural design of Shiva statue and also various characteristics like foundation, height, material used etc. | | Site Visit at Kaladwas Indusrial Area(Sanchi Group): Estimations, Column-footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students learned the construction of Multistory building at SANCHI Group. | | Highway project
(debari-kaya
byepass):
Pretensioning,
postensioning, piers
reinforement. launhing
of I girders, Mix design
etc | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students learned the Pre-
tensioning and Post-
Tensioning Process in highway
girders. | | Site Visit At eklingpura (Multistorey building) : Frame work, slab - beam reinforement, inetrior work informations, grade of quality, in situ testing. | Batch 2015-19
(6th Sem) | 1 Day | Viva | Students learned the construction of Multistory building at Eklingpura building. | |---|-----------------------------|-------|------|---| | Site Visit at Kaladwas Indusrial Area(Sanchi Group): Estimations, Column-footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2016-20 (
4th Sem) | 1 Day | Viva | Students learned the building technology concepts by understanding the structural working process at the site. | | Shiva Statue: About
the history, Importance
of structure, Design
aspects for wind and
seismic conditions,
special materials, form
work etc. | Batch 2016-20
(6th Sem) | 1 Day | Viva | Students learned the structural design of Shiva statue and also various characteristics like foundation, height, material used etc. | | Site Visit at Mahi Dam: Importance of Reserviour, Capacity, History, Control Unit, Fuctioning and operation under high rains etc. | Batch 2016-20 (
4th Sem) | 1 Day | Viva | Students Learned the working of Mahi Dam and the characteristics of Dam like catchment area, Volume of water flow etc. | | Site Visit at Kaladwas Indusrial Area(Sanchi Group): Estimations, Column-footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2017-21
(5 th Sem) | 1 Day | Viva | Students learned the construction of Multistory building at SANCHI Group. | | Shiva Statue: About
the history, Importance
of structure, Design
aspects for wind and
seismic conditions,
special materials, form
work etc. | Batch 2017-21
(5 th Sem) | 1 Day | Viva | Students learned the structural design of Shiva statue and also various characteristics like foundation, height, material used etc. | | Cita Minit At | | | Vi | | |---|--|---------|---|--| | Site Visit At Eklingpura (Multistorey building) : Frame work, slab - beam reinforement, inetrior work informations, grade of quality, in situ testing. | Batch 2017-21
(4 th Sem) | 1 Day | Viva | Students learned the construction of Multistory building at Eklingpura building. | | Shiva Statue: About
the history, Importance
of structure, Design
aspects for wind and
seismic conditions,
special materials, form
work etc. | Batch 2018-22
(4 th sem) | 1 Day | Viva | Students learned the structural design of Shiva statue and also various characteristics like foundation, height, material used etc. | | Site Visit at Kaladwas Indusrial Area(Sanchi Group): Estimations, Column-footing layout plan, Information about workmanship, grade of concrete and reinforcement etc. | Batch 2018-22
(4 th sem) | 1 Day | Viva | Students learned the building technology concepts by understanding the structural working process at the site. | | SMART CITY PROJECT (UDAIPUR): Ayad river surveying, rejuvenation and redevelopment plan prepared. | Lokesh Puri
Goswami,
Kundan
Gorana,
Kamlesh
kumar, Sachin
kumar. Harshit
Jharoli, Mohit | 7 Days | On the basis of performance in project and planning and drawing | Students collected elevation data and proposed a plan for rejuvenation of Ayad river (Udaipur). | | INTERNATIONAL CIVIL ENGINEERING SYMPOSIUM (IIT BOMBAY): Research paper presented on Low cost bricks using marble slurry, waste plastic and sand, won first prize. | Lokesh Puri
Goswami,
Harshit Jharoli. | 2 Month | On the basis of research paper | Research paper presented on
Low cost bricks using marble
slurry, waste plastic and sand,
won first prize. | | SMART INDIA HACKATHON - HARDWARE 2018 (MHRD): Participated in 5 days grand finale at NIT Tiruchirapalli, Prototype developed and demonstrated Won first prize and received grant for idea implementation. | Kunjal Jain,
kunjpreet kour,
Lokesh Puri,
Gaura Suthar
Syad Amir.
Dharmenra. | Yearly | On the basis of performance in project and result | Participated in 5 days grand finale at NIT Tiruchirapalli, Prototype developed and demonstrated. Won first prize and received grant for idea implementation. | implementation. | Bentley Institute
Student Design
Challenge 2019:
Seismic analysis of
building, Staad Pro, | Kamakshi
Sharma, Syad
Amir, Nikita
Sharma | 20 Days | On the basis of project performance | Students Designed a building according to the problem statement in Staad Pro software and learned designing and analysis of a high rise building. | |--|--|---------|-------------------------------------|---| | IPRENEUR19 (TATA INSTITUTE OF SOCIAL SCIENCE, MUMBAI): Idea Pitched at Ipreneur compitition and won 2nd prize. | Kunjpreet kour,
Lokesh Puri | Yearly | Not required | | | Bentley Institute
Student Design
Challenge 2019 :
Seismic analysis of
building, Staad Pro, | Batch 2017-21
and 2018-22 | 20 Days | On the basis of project performance | Students Designed a building according to the problem statement in Staad Pro software and learned designing and analysis of a high rise building. | TENHIN MANA MILE ASSESSED LE COMPA | Name of the Program | List of Students
enrolled | Duration | Assessment
Procedures | Summary Report of
each Program with
their outcome | |--
---|----------|--|---| | Requirements of Solid Waste
Management System in
Savina Vegetable Market at
Smart City Udaipur in
Rajasthan | Kunjal Jain, Parveen
Choudhary, Kishan
Dangi, Kirthesh
Kalal | 7 Days | On the basis of performance in project, report writing and presentation at Vyapari Mandal Sangh of Savina Market | Students gathered data regarding waste generation and their characterization and proposed a requirement of cleaning system. | | Winter Survey Camp
(Estimation, Total Station,
Profile levelling,
Contouring, Estimation) | Batch 2017 (5th
Sem) | 30 Days | Report writing,
viva, presentation | Students learned the application of Surveying instrument in Levelling and Triangulation techniques. | | Site Visit at residential building projet, AKME Paradise: Frame work, slab - beam reinforcement, interior work information, grade of quality, in situ testing. | Batch 2017-21 (5 th
Sem) | 1 Day | Viva | Students learned the
structural and
architectural concepts of
multistory building at
AKME Paradise | | LAUNCH & ZOOM 2.0 (IIM
UDAIPUR): Currently project
incubated for business
development. | Kunjpreet kour,
Lokesh Puri | 3 year | Not required | Currently project of environmentally friendly bricks incubated for business development. | | AAKAR 2020 (IIT BOMBAY):
Porous concrete developed
and sample prepared for
research work. | Batch 2018-22 and
Batch 2019-23 | 30 days | On the performance in project | Student researched on Porous concrete manufacturing process and implemented it in the competition by making a porous. |